Spaces:
Running
Running
File size: 13,891 Bytes
1971175 5ef407f ee1b999 9181029 ee1b999 9181029 cd5338b 9181029 ee1b999 02a4349 ee1b999 1971175 9181029 95d1ab7 9181029 95d1ab7 9181029 95d1ab7 9181029 95d1ab7 1971175 9181029 95d1ab7 9181029 5ef407f ee1b999 5ef407f ee1b999 cd5338b ee1b999 1971175 11de2f8 ee1b999 dd5281a 11de2f8 dd5281a 1971175 ee1b999 1971175 ee1b999 11de2f8 ee1b999 1971175 ee1b999 02a4349 ee1b999 1971175 ee1b999 1971175 2972be9 1971175 b0bd18e 1971175 b0bd18e 1971175 b0bd18e 1971175 b0bd18e 1971175 11de2f8 2972be9 9832707 ac9171f ae05bbd ac9171f 9832707 ac9171f ae05bbd ac9171f 50fb0f5 ae05bbd 50fb0f5 ac9171f 0d80b6f b48ebfb cd5338b 11de2f8 cd5338b 11de2f8 cd5338b 11de2f8 cd5338b 11de2f8 cd5338b 9c18850 49b6cdd 9c18850 f909e70 9c18850 f909e70 9c18850 50fb0f5 afb9b4c c917078 afb9b4c c917078 afb9b4c c917078 afb9b4c c934393 ee1b999 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 |
TITLE = """<h1 align="left" id="space-title">AstaBench Leaderboard</h1>"""
INTRO_PARAGRAPH = """
Newer benchmarks may test agentic AI and isolated aspects of scientific reasoning, but none rigorously measure agentic AI or capture the full range of skills research demands. Agents can appear effective by simply retrying tasks—often at high computational cost and with inconsistent results. Scientific AI needs evaluations that reflect the real complexity of research.
<br>
<br>
AstaBench fills that gap: a suite of open benchmarks for evaluating scientific AI assistants on core scientific tasks that require novel reasoning. The suite includes over 8,000 tasks across 11 benchmarks, organized into four core categories: Literature Understanding, Code & Execution, Data Analysis, and End-to-End Discovery.
<br>
<br>
The **AstaBench Leaderboard** below provides a high-level summary of agent performance and efficiency. It includes:
<br>
<br>
- An **overall score**, computed as a macro average of the four category-level macro averages, ensuring each domain contributes equally—regardless of how many benchmarks each category includes. This provides a fair and balanced comparison across agents with varying capabilities.
- An **overall average cost per task**, consistently aggregated across all categories, to reflect the real efficiency of each agent under comparable conditions.
<br>
To support domain-specific insight, AstaBench also provides per-category leaderboards:
<br>
<br>
- Literature Understanding
<br>
- Code & Execution
<br>
- Data Analysis
<br>
- End-to-End Discovery
<br>
<br>
Each category page includes a summary table (average score and cost per problem for that domain), as well as per-benchmark leaderboards for detailed comparisons on specific tasks.
<br>
<br>
🔍 Learn more in the AstaBench technical blog post
"""
SCATTER_DISCLAIMER = """
**Note:** Agents without cost data are displayed to the right of the vertical divider line. <span class="tooltip-icon" data-tooltip="Missing Cost Dashed Line: Max Cost + (MaxCost/10) Missing Cost Datapoints/No Cost Data = Max Cost + (MaxCost/5)">ⓘ</span>
"""
scatter_disclaimer_html = """
<div class="disclaimer-text">
<b>Note:</b> Agents without cost data are displayed to the right of the vertical divider line.
<span class="tooltip-icon" data-tooltip="Missing Cost Dashed Line:
Max Cost + (MaxCost/10)
Missing Cost Datapoints / No Cost Data:
Max Cost + (MaxCost/5)">
ⓘ
</span>
</div>
"""
PARETO_DISCLAIMER = """
Agents names that are green are Pareto optimal, meaning they achieve the best performance for their cost.
"""
LIT_DESCRIPTION = """
The **Literature Understanding** category evaluates how well agents comprehend and interact with scientific literature—testing their ability to find research papers, assess citation quality, extract information from text, and more.
<br><br>
The scores shown below reflect performance aggregated across five distinct benchmarks, each targeting a different aspect of literature-based reasoning.
<br><br>
For detailed results, use the links above to explore individual benchmarks.
<br>
"""
CODE_EXECUTION_DESCRIPTION = """
The **Code & Execution** category in AstaBench includes tasks that evaluate an agent’s ability to write, modify, and run code in realistic research scenarios. Unlike literature tasks—which only require read-only tools and can sometimes even be solved by a language model alone—these problems often require the agent to manipulate a machine environment with tools: reading input files, executing code, and writing outputs to specific files in the required format.
<br><br>
The scores in this category are aggregated from three distinct benchmarks, each targeting different facets of scientific coding and execution. Together, these benchmarks evaluate whether an agent can function as a hands-on scientific assistant—not just by reasoning about code, but by running it in real-world contexts.
<br><br>
For detailed results, use the links above to explore individual benchmark pages.
<br>
"""
DATA_ANALYSIS_DESCRIPTION = """
The **Data Analysis** category evaluates agents on their ability to analyze structured datasets and generate meaningful scientific hypotheses. It currently includes a single benchmark, DiscoveryBench, so the category-level scores are the same as the benchmark-level results.
<br><br>
As additional benchmarks are added in the future, this category will expand to cover a broader range of data-driven reasoning tasks across scientific domains.
<br>
"""
DISCOVERY_DESCRIPTION = """
The **End-to-End Discovery** category tests whether agents can carry out a complete scientific workflow, from task description to experiment design, code execution, results analysis, and report writing. These tasks require agents to integrate multiple capabilities, producing not just answers but full research artifacts.
<br><br>
Scores in this category are aggregated from two benchmarks, providing the first standardized way to evaluate automated scientific discovery (ASD) agents across all stages of the research process. Use the links above to explore individual benchmark pages.
<br>
"""
CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
CITATION_BUTTON_TEXT = r"""@article{asta-bench,
title={AstaBench},
author={AstaBench folks},
year={2025},
eprint={TBD.TBD},
archivePrefix={arXiv},
primaryClass={cs.AI},
secondaryClass={cs.CL}
}"""
def format_error(msg):
return f"<p style='color: red; font-size: 20px; text-align: center;'>{msg}</p>"
def format_warning(msg):
return f"<p style='color: orange; font-size: 20px; text-align: center;'>{msg}</p>"
def format_log(msg):
return f"<p style='color: green; font-size: 20px; text-align: center;'>{msg}</p>"
def hyperlink(link_url: str, text: str = "🔗") -> str:
if not link_url or not isinstance(link_url, str):
return str(text) # Or simply "" if link_url is bad
# Using a simpler style here for broad compatibility, your original style is fine too.
return f'<a target="_blank" href="{link_url}">{text}</a>'
def hf_uri_to_web_url(uri: str) -> str:
"""
Convert a Hugging Face-style URI like:
hf://datasets/{namespace}/{repo}/{path...}
into a public web URL:
https://huggingface.co/datasets/{namespace}/{repo}/tree/main/{path...}
"""
prefix = "hf://datasets/"
if not uri.startswith(prefix):
raise ValueError("URI must start with 'hf://datasets/'")
parts = uri[len(prefix) :].split("/", 2)
if len(parts) < 3:
raise ValueError("Expected format: hf://datasets/{namespace}/{repo}/{path...}")
namespace, repo, path = parts
return f"https://huggingface.co/datasets/{namespace}/{repo}/tree/main/{path}"
css = """
#intro-paragraph {
font-size: 18px;
max-width: 60%;
padding-left: 25px;
}
#about-content {
font-size: 18px;
max-width: 60%;
padding-left: 25px;
}
#category-intro {
font-size: 18px;
max-width: 60%;
}
#logo-image {
margin: 0;
margin-bottom: 30px;
justify-content: flex-start;
max-width: 250px;
height: auto;
}
#page-content-wrapper{
padding-left: 25px;
}
.table-component{
height: auto !important;
max-height: none !important;
}
.table-wrap {
max-height: none !important;
height: auto !important;
overflow-y: visible !important;
}
/* --- New Rules for Table Density --- */
table.gr-table th, table.gr-table td {
padding: 4px 4px !important;
width: 1%;
white-space: nowrap;
}
table.svelte-1e98i6s td {
vertical-align: top !important;
}
table.gr-table {
font-size: 14px !important;
}
.html-container {
padding-top: 0 !important;
}
#scatter-disclaimer {
overflow: visible !important;
}
#pareto-disclaimer {
color: #f0529c !important;
}
thead.svelte-1e98i6s th {
background: white !important;
}
.dark thead.svelte-1e98i6s th {
background: #091a1a !important;
}
.cell-wrap.svelte-v1pjjd {
font-family: 'Manrope';
}
nav.svelte-ti537g.svelte-ti537g {
justify-content: flex-start;
}
#legend-markdown span {
margin-right: 15px !important;
}
#leaderboard-accordion .label-wrap {
font-size: 1.4rem !important;
z-index: 10 !important;
position: relative !important;
}
.dark #leaderboard-accordion .label-wrap {
color: #0FCB8C !important;
}
.dark block.svelte-1svsvh2 {
background: #032629 !important;
}
.padding.svelte-phx28p {
padding: 0 !important;
}
.dark .sub-nav-link-button {
color: #0fcb8c !important;
}
.sub-nav-bar-container {
display: flex !important;
flex-wrap: nowrap !important;
align-items: center !important;
gap: 20px !important;
}
.sub-nav-link-button {
background: none;
border: none;
padding: 0;
margin: 0;
font-family: inherit;
font-size: 16px;
color: #F263A6;
text-decoration: none;
cursor: pointer;
white-space: nowrap;
}
.sub-nav-link-button:hover {
text-decoration: underline;
}
.sub-nav-label {
font-weight: bold;
font-size: 16px;
display: flex;
align-items: center;
}
.wrap-header-df th span{
white-space: normal !important;
word-break: normal !important;
overflow-wrap: break-word !important;
line-height: 1.2 !important;
vertical-align: top !important;
font-size: 12px !important;
}
.wrap-header-df th {
height: auto !important;
}
.wrap-header-df .cell-wrap img {
width: 16px;
height: 16px;
vertical-align: middle;
}
#legend-markdown img {
width: 16px;
height: 16px;
vertical-align: middle;
}
/*------ Global tooltip styles ------*/
.tooltip-icon {
display: inline-block;
margin-left: 6px;
cursor: help;
position: relative;
}
.tooltip-icon::after {
content: attr(data-tooltip);
position: absolute;
bottom: 125%;
background-color: #105257;
color: #fff;
padding: 10px;
border-radius: 4px;
font-size: 12px;
opacity: 0;
transition: opacity 0.2s;
white-space: pre-line;
width: max-content;
text-align: left;
pointer-events: none;
max-width: 300px;
left: 50%;
transform: translateX(-50%);
z-index: 1000;
}
@media (max-width: 768px) {
.tooltip-icon::after {
max-width: 250px;
}
}
.tooltip-icon:hover::after {
opacity: 1;
}
/*------ Openness label tooltip styles ------*/
.styler,
#openness-label-html,
#agent-tooling-label-html {
overflow: visible !important;
}
/*------ Table cell tooltip styles ------*/
.wrap.default.full,
span.wrap[tabindex="0"][role="button"][data-editable="false"] {
overflow: visible !important;
}
.cell-tooltip-icon::after {
height: fit-content;
top: 125%;
}
/*------ Table column description tooltip styles ------*/
#legend-markdown,
#leaderboard-accordion {
overflow: visible !important;
}
/* --- inside table tooltips --- */
.native-tooltip-icon {
cursor: help;
text-decoration: underline dotted 1px;
}
/* Main Nav bar styling */
.nav-holder nav {
display: grid !important;
grid-template-columns: auto auto auto auto 1fr auto auto !important;
gap: 10px 20px !important; /* Vertical and horizontal spacing */
width: 100% !important;
}
.nav-holder nav a[href*="about"] {
grid-row: 1 !important;
grid-column: 6 !important;
}
.nav-holder nav a[href*="submit"] {
grid-row: 1 !important;
grid-column: 7 !important;
}
.nav-holder nav a[href*="literature-understanding"] {
grid-row: 3 !important;
grid-column: 1 !important;
width: fit-content !important;
justify-self: center !important;
}
.nav-holder nav a[href*="code-execution"] {
grid-row: 3 !important;
grid-column: 2 !important;
padding-right: 20px !important;
justify-self: center !important;
}
.nav-holder nav a[href*="data-analysis"] {
grid-row: 3 !important;
grid-column: 3 !important;
padding-right: 20px !important;
justify-self: center !important;
}
.nav-holder nav a[href*="discovery"] {
grid-row: 3 !important;
grid-column: 4 !important;
padding-right: 20px !important;
justify-self: center !important;
}
.nav-holder nav::after {
content: ''; /* Required for pseudo-elements to appear */
background-color: #C9C9C3;
height: 1px;
grid-row: 2 !important;
grid-column: 1 / -1 !important;
}
.benchmark-header {
display: flex !important;
align-items: center !important;
gap: 20px !important;
width: 100% !important;
}
.scroll-up-container .prose {
display: flex;
justify-content: flex-end;
}
.scroll-up-button {
flex-grow: 0;
display: flex;
color: #032629;
background-color: #faf2e9;
align-items: flex-end;
height: 57px;
padding: 0px;
padding-bottom: 2px;
min-width: 50px;
}
.dark .scroll-up-button {
color: #faf2e9;
background-color: #032629;
}
/*------ Submission Page CSS ------*/
#custom-form-group {
border: 1px solid #000 !important;
border-radius: 4px !important;
padding: 16px 16px 0px 0px !important;
overflow: visible !important;
}
#openness-label-html,
#agent-tooling-label-html {
padding-left: 12px;
}
#custom-form-group fieldset {
padding-top: 0px !important;
}
#agent-tooling-label-html {
padding-top: 6px;
}
#custom-form-group,
.styler {
background: none;
}
#feedback-button {
display: inline-block;
background-color: #345d60;
color: white;
border: none;
border-radius: 4px;
margin: 5px 0 0 24px;
padding: 15px 20px;
font-size: 16px;
cursor: pointer;
transition: all 0.3s ease;
text-decoration: none;
}
#feedback-button:hover {
background-color: #5d888b;
transform: translateY(-2px);
box-shadow: 0 6px 12px rgba(0,0,0,0.3);
}
.dark #main-header h2 {
color: #0fcb8c;
}
#main-header h2 {
color: #f0529c;
}
"""
|