File size: 13,891 Bytes
1971175
5ef407f
ee1b999
9181029
ee1b999
9181029
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd5338b
9181029
 
 
 
ee1b999
 
02a4349
 
 
 
 
 
 
 
 
 
 
 
ee1b999
1971175
 
 
 
9181029
95d1ab7
 
 
 
9181029
 
 
95d1ab7
 
 
 
 
9181029
 
 
95d1ab7
 
9181029
95d1ab7
1971175
9181029
95d1ab7
 
 
9181029
5ef407f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee1b999
 
 
 
 
5ef407f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee1b999
cd5338b
ee1b999
1971175
 
 
11de2f8
ee1b999
dd5281a
 
 
11de2f8
dd5281a
1971175
 
 
ee1b999
 
1971175
 
 
ee1b999
 
 
11de2f8
 
 
ee1b999
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1971175
 
 
ee1b999
 
 
 
 
 
 
02a4349
ee1b999
1971175
 
 
ee1b999
 
 
1971175
 
 
 
 
 
 
 
 
 
 
 
 
 
2972be9
 
1971175
 
 
 
 
 
 
b0bd18e
 
 
 
 
 
 
 
 
 
 
1971175
b0bd18e
 
 
 
 
 
1971175
b0bd18e
 
 
 
1971175
b0bd18e
 
1971175
11de2f8
 
 
 
 
 
2972be9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9832707
ac9171f
 
 
 
 
 
 
 
 
 
ae05bbd
ac9171f
9832707
ac9171f
 
 
 
 
ae05bbd
ac9171f
 
50fb0f5
ae05bbd
 
50fb0f5
 
 
 
 
 
ac9171f
 
 
 
0d80b6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b48ebfb
 
 
 
 
cd5338b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11de2f8
 
cd5338b
 
 
 
11de2f8
 
cd5338b
 
 
 
11de2f8
 
cd5338b
 
 
 
11de2f8
 
cd5338b
 
 
 
 
 
 
 
9c18850
 
 
 
49b6cdd
 
 
 
 
9c18850
f909e70
9c18850
 
 
 
 
 
 
 
 
 
f909e70
9c18850
 
 
50fb0f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
afb9b4c
c917078
 
afb9b4c
 
 
 
c917078
afb9b4c
 
 
 
 
 
 
c917078
afb9b4c
 
 
 
c934393
 
 
 
 
 
ee1b999
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
TITLE = """<h1 align="left" id="space-title">AstaBench Leaderboard</h1>"""

INTRO_PARAGRAPH = """
Newer benchmarks may test agentic AI and isolated aspects of scientific reasoning, but none rigorously measure agentic AI or capture the full range of skills research demands. Agents can appear effective by simply retrying tasks—often at high computational cost and with inconsistent results. Scientific AI needs evaluations that reflect the real complexity of research.
<br>
<br>
AstaBench fills that gap: a suite of open benchmarks for evaluating scientific AI assistants on core scientific tasks that require novel reasoning. The suite includes over 8,000 tasks across 11 benchmarks, organized into four core categories: Literature Understanding, Code & Execution, Data Analysis, and End-to-End Discovery.
<br>
<br>
The **AstaBench Leaderboard** below provides a high-level summary of agent performance and efficiency. It includes:
<br>
<br>
- An **overall score**, computed as a macro average of the four category-level macro averages, ensuring each domain contributes equally—regardless of how many benchmarks each category includes. This provides a fair and balanced comparison across agents with varying capabilities.
- An **overall average cost per task**, consistently aggregated across all categories, to reflect the real efficiency of each agent under comparable conditions.
<br>
To support domain-specific insight, AstaBench also provides per-category leaderboards:
<br>
<br>
- Literature Understanding
<br>
- Code & Execution
<br>
- Data Analysis
<br>
- End-to-End Discovery
<br>
<br>
Each category page includes a summary table (average score and cost per problem for that domain), as well as per-benchmark leaderboards for detailed comparisons on specific tasks.
<br>
<br>
🔍 Learn more in the AstaBench technical blog post
"""
SCATTER_DISCLAIMER = """
**Note:** Agents without cost data are displayed to the right of the vertical divider line. <span class="tooltip-icon" data-tooltip="Missing Cost Dashed Line: Max Cost + (MaxCost/10) Missing Cost Datapoints/No Cost Data = Max Cost + (MaxCost/5)">ⓘ</span>
"""
scatter_disclaimer_html = """
<div class="disclaimer-text">
    <b>Note:</b> Agents without cost data are displayed to the right of the vertical divider line.
    <span class="tooltip-icon" data-tooltip="Missing Cost Dashed Line: 
    Max Cost + (MaxCost/10)
    Missing Cost Datapoints / No Cost Data: 
    Max Cost + (MaxCost/5)">

    </span>
</div>
"""
PARETO_DISCLAIMER = """
Agents names that are green are Pareto optimal, meaning they achieve the best performance for their cost. 
"""
LIT_DESCRIPTION = """
The **Literature Understanding** category evaluates how well agents comprehend and interact with scientific literature—testing their ability to find research papers, assess citation quality, extract information from text, and more.
<br><br>
The scores shown below reflect performance aggregated across five distinct benchmarks, each targeting a different aspect of literature-based reasoning. 
<br><br>
For detailed results, use the links above to explore individual benchmarks.
<br>
"""
CODE_EXECUTION_DESCRIPTION = """
The **Code & Execution** category in AstaBench includes tasks that evaluate an agent’s ability to write, modify, and run code in realistic research scenarios. Unlike literature tasks—which only require read-only tools and can sometimes even be solved by a language model alone—these problems often require the agent to manipulate a machine environment with tools: reading input files, executing code, and writing outputs to specific files in the required format.
<br><br>
The scores in this category are aggregated from three distinct benchmarks, each targeting different facets of scientific coding and execution. Together, these benchmarks evaluate whether an agent can function as a hands-on scientific assistant—not just by reasoning about code, but by running it in real-world contexts.
<br><br>
For detailed results, use the links above to explore individual benchmark pages.
<br>
"""
DATA_ANALYSIS_DESCRIPTION = """
The **Data Analysis** category evaluates agents on their ability to analyze structured datasets and generate meaningful scientific hypotheses. It currently includes a single benchmark, DiscoveryBench, so the category-level scores are the same as the benchmark-level results.
<br><br>
As additional benchmarks are added in the future, this category will expand to cover a broader range of data-driven reasoning tasks across scientific domains.
<br>
"""
DISCOVERY_DESCRIPTION = """
The **End-to-End Discovery** category tests whether agents can carry out a complete scientific workflow, from task description to experiment design, code execution, results  analysis, and report writing. These tasks require agents to integrate multiple capabilities, producing not just answers but full research artifacts.
<br><br>
Scores in this category are aggregated from two benchmarks, providing the first standardized way to evaluate automated scientific discovery (ASD) agents across all stages of the research process. Use the links above to explore individual benchmark pages.
<br>
"""

CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
CITATION_BUTTON_TEXT = r"""@article{asta-bench,
    title={AstaBench},
    author={AstaBench folks},
    year={2025},
    eprint={TBD.TBD},
    archivePrefix={arXiv},
    primaryClass={cs.AI},
    secondaryClass={cs.CL}
}"""

def format_error(msg):
    return f"<p style='color: red; font-size: 20px; text-align: center;'>{msg}</p>"


def format_warning(msg):
    return f"<p style='color: orange; font-size: 20px; text-align: center;'>{msg}</p>"


def format_log(msg):
    return f"<p style='color: green; font-size: 20px; text-align: center;'>{msg}</p>"


def hyperlink(link_url: str, text: str = "🔗") -> str:
    if not link_url or not isinstance(link_url, str):
        return str(text) # Or simply "" if link_url is bad
    # Using a simpler style here for broad compatibility, your original style is fine too.
    return f'<a target="_blank" href="{link_url}">{text}</a>'


def hf_uri_to_web_url(uri: str) -> str:
    """
    Convert a Hugging Face-style URI like:
        hf://datasets/{namespace}/{repo}/{path...}
    into a public web URL:
        https://huggingface.co/datasets/{namespace}/{repo}/tree/main/{path...}
    """
    prefix = "hf://datasets/"
    if not uri.startswith(prefix):
        raise ValueError("URI must start with 'hf://datasets/'")

    parts = uri[len(prefix) :].split("/", 2)
    if len(parts) < 3:
        raise ValueError("Expected format: hf://datasets/{namespace}/{repo}/{path...}")

    namespace, repo, path = parts
    return f"https://huggingface.co/datasets/{namespace}/{repo}/tree/main/{path}"


css = """
#intro-paragraph {
    font-size: 18px;
    max-width: 60%;
    padding-left: 25px;
}
#about-content {
    font-size: 18px;
    max-width: 60%;
    padding-left: 25px;
}
#category-intro {
    font-size: 18px;
    max-width: 60%;
}
#logo-image { 
    margin: 0;
    margin-bottom: 30px; 
    justify-content: flex-start;        
    max-width: 250px;       
    height: auto;           
}
#page-content-wrapper{
    padding-left: 25px;
}
.table-component{
    height: auto !important;
    max-height: none !important;
}
.table-wrap {
    max-height: none !important;
    height: auto !important;
    overflow-y: visible !important;
}
/* --- New Rules for Table Density --- */
table.gr-table th, table.gr-table td {
    padding: 4px 4px !important; 
    width: 1%;
    white-space: nowrap;
}
table.svelte-1e98i6s td {
    vertical-align: top !important;
}
table.gr-table {
    font-size: 14px !important;
}
.html-container {
    padding-top: 0 !important;
}
#scatter-disclaimer {
        overflow: visible !important;
}
#pareto-disclaimer {
    color: #f0529c !important;
}
thead.svelte-1e98i6s th {
    background: white !important;
}
.dark thead.svelte-1e98i6s th {
    background: #091a1a !important;
}
.cell-wrap.svelte-v1pjjd {
    font-family: 'Manrope';
    }
nav.svelte-ti537g.svelte-ti537g {
    justify-content: flex-start;
}
#legend-markdown span {
    margin-right: 15px !important; 
}
#leaderboard-accordion .label-wrap {
    font-size: 1.4rem !important; 
    z-index: 10 !important;
    position: relative !important;
}
.dark #leaderboard-accordion .label-wrap {
    color: #0FCB8C !important; 
}
.dark block.svelte-1svsvh2 {
    background: #032629 !important;
}
.padding.svelte-phx28p {
    padding: 0 !important;
}
.dark .sub-nav-link-button {
    color: #0fcb8c !important;
}
.sub-nav-bar-container {
    display: flex !important;
    flex-wrap: nowrap !important; 
    align-items: center !important; 
    gap: 20px !important;
}
.sub-nav-link-button {
    background: none;
    border: none;
    padding: 0;
    margin: 0;
    font-family: inherit;
    font-size: 16px;
    color: #F263A6; 
    text-decoration: none;
    cursor: pointer;
    white-space: nowrap;
}
.sub-nav-link-button:hover {
    text-decoration: underline;
}
.sub-nav-label {
    font-weight: bold;
    font-size: 16px;
    display: flex;
    align-items: center;
}
.wrap-header-df th span{
    white-space: normal !important;
    word-break: normal !important;
    overflow-wrap: break-word !important;
    line-height: 1.2 !important;
    vertical-align: top !important;
    font-size: 12px !important;
    
}
.wrap-header-df th {
    height: auto !important;
}
.wrap-header-df .cell-wrap img {
    width: 16px;
    height: 16px;
    vertical-align: middle;
}
#legend-markdown img {
    width: 16px;
    height: 16px;
    vertical-align: middle;
}
/*------ Global tooltip styles ------*/
.tooltip-icon {
    display: inline-block;
    margin-left: 6px;
    cursor: help;
    position: relative;
}
.tooltip-icon::after {
    content: attr(data-tooltip);
    position: absolute;
    bottom: 125%;
    background-color: #105257;
    color: #fff;
    padding: 10px;
    border-radius: 4px;
    font-size: 12px;
    opacity: 0;
    transition: opacity 0.2s;
    white-space: pre-line;
    width: max-content;
    text-align: left;
    pointer-events: none;
    max-width: 300px;
    left: 50%;
    transform: translateX(-50%);
    z-index: 1000;
}
@media (max-width: 768px) {
    .tooltip-icon::after {
        max-width: 250px;
    }
}
.tooltip-icon:hover::after {
    opacity: 1;
}
/*------ Openness label tooltip styles ------*/
.styler,
#openness-label-html,
#agent-tooling-label-html {
    overflow: visible !important;
}
/*------ Table cell tooltip styles ------*/
.wrap.default.full,
span.wrap[tabindex="0"][role="button"][data-editable="false"] {
  overflow: visible !important;
}

.cell-tooltip-icon::after {
    height: fit-content;
    top: 125%;
}
/*------ Table column description tooltip styles ------*/
#legend-markdown,
#leaderboard-accordion {
    overflow: visible !important;
}

/* --- inside table tooltips --- */
.native-tooltip-icon {
    cursor: help;
    text-decoration: underline dotted 1px;
}
/* Main Nav bar styling */
.nav-holder nav {
    display: grid !important;
    grid-template-columns: auto auto auto auto 1fr auto auto !important;
    gap: 10px 20px !important; /* Vertical and horizontal spacing */
    width: 100% !important;
}
.nav-holder nav a[href*="about"] {
    grid-row: 1 !important;
    grid-column: 6 !important;
}
.nav-holder nav a[href*="submit"] {
    grid-row: 1 !important;
    grid-column: 7 !important;
}
.nav-holder nav a[href*="literature-understanding"] {
    grid-row: 3 !important;
    grid-column: 1 !important;
    width: fit-content !important;
    justify-self: center !important;
}
.nav-holder nav a[href*="code-execution"] {
    grid-row: 3 !important;
    grid-column: 2 !important;
    padding-right: 20px !important;
    justify-self: center !important; 
}
.nav-holder nav a[href*="data-analysis"] {
    grid-row: 3 !important;
    grid-column: 3 !important;
    padding-right: 20px !important;
    justify-self: center !important;
}
.nav-holder nav a[href*="discovery"] {
    grid-row: 3 !important;
    grid-column: 4 !important;
    padding-right: 20px !important;
    justify-self: center !important;
}
.nav-holder nav::after {
    content: ''; /* Required for pseudo-elements to appear */
    background-color: #C9C9C3;
    height: 1px; 
    grid-row: 2 !important;
    grid-column: 1 / -1 !important;
}
.benchmark-header {
    display: flex !important;
    align-items: center !important;
    gap: 20px !important;
    width: 100% !important;
}
.scroll-up-container .prose {
    display: flex;
    justify-content: flex-end; 
}
.scroll-up-button {
    flex-grow: 0;
    display: flex;
    color: #032629;
    background-color: #faf2e9;
    align-items: flex-end;
    height: 57px;
    padding: 0px;
    padding-bottom: 2px;
    min-width: 50px;
}
.dark .scroll-up-button {
    color: #faf2e9;
    background-color: #032629;
}
/*------ Submission Page CSS ------*/
#custom-form-group {
    border: 1px solid #000 !important; 
    border-radius: 4px !important;
    padding: 16px 16px 0px 0px !important;
    overflow: visible !important;    
}

#openness-label-html,
#agent-tooling-label-html {
    padding-left: 12px;
}

#custom-form-group fieldset {
    padding-top: 0px !important;
}

#agent-tooling-label-html {
    padding-top: 6px;
}

#custom-form-group,
.styler {
    background: none;
}

#feedback-button {
    display: inline-block;
    background-color: #345d60;
    color: white;
    border: none;
    border-radius: 4px;
    margin: 5px 0 0 24px;
    padding: 15px 20px;
    font-size: 16px;
    cursor: pointer;
    transition: all 0.3s ease;
    text-decoration: none;
}

#feedback-button:hover {
    background-color: #5d888b;
    transform: translateY(-2px);
    box-shadow: 0 6px 12px rgba(0,0,0,0.3);
}
.dark #main-header h2 {
    color: #0fcb8c; 
}
#main-header h2 {
    color: #f0529c;
}
"""