Amber Tanaka commited on
Commit
941eea2
·
unverified ·
1 Parent(s): 20c57a4

Add Date to table (#75)

Browse files
Files changed (2) hide show
  1. leaderboard_transformer.py +3 -3
  2. ui_components.py +4 -2
leaderboard_transformer.py CHANGED
@@ -257,7 +257,7 @@ class DataTransformer:
257
  # --- 3. Add Columns for Agent Openness and Tooling ---
258
  base_cols = ["id","Agent","Submitter","LLM Base","Source"]
259
  new_cols = ["Openness", "Agent Tooling"]
260
- ending_cols = ["Logs"]
261
 
262
  metrics_to_display = [primary_score_col, f"{primary_metric} Cost"]
263
  for item in group_metrics:
@@ -290,7 +290,7 @@ class DataTransformer:
290
  # Apply the function row-wise to create the new column
291
  attempted_column = df_view.apply(calculate_attempted, axis=1)
292
  # Insert the new column at a nice position (e.g., after "Date")
293
- df_view.insert((cols - 1), "Categories Attempted", attempted_column)
294
  else:
295
  total_benchmarks = len(group_metrics)
296
  def calculate_benchmarks_attempted(row):
@@ -303,7 +303,7 @@ class DataTransformer:
303
  else:
304
  return f"{count}/{total_benchmarks}"
305
  # Insert the new column, for example, after "Date"
306
- df_view.insert((cols - 1), "Benchmarks Attempted", df_view.apply(calculate_benchmarks_attempted, axis=1))
307
 
308
  # --- 4. Generate the Scatter Plot for the Primary Metric ---
309
  plots: dict[str, go.Figure] = {}
 
257
  # --- 3. Add Columns for Agent Openness and Tooling ---
258
  base_cols = ["id","Agent","Submitter","LLM Base","Source"]
259
  new_cols = ["Openness", "Agent Tooling"]
260
+ ending_cols = ["Date", "Logs"]
261
 
262
  metrics_to_display = [primary_score_col, f"{primary_metric} Cost"]
263
  for item in group_metrics:
 
290
  # Apply the function row-wise to create the new column
291
  attempted_column = df_view.apply(calculate_attempted, axis=1)
292
  # Insert the new column at a nice position (e.g., after "Date")
293
+ df_view.insert((cols - 2), "Categories Attempted", attempted_column)
294
  else:
295
  total_benchmarks = len(group_metrics)
296
  def calculate_benchmarks_attempted(row):
 
303
  else:
304
  return f"{count}/{total_benchmarks}"
305
  # Insert the new column, for example, after "Date"
306
+ df_view.insert((cols - 2), "Benchmarks Attempted", df_view.apply(calculate_benchmarks_attempted, axis=1))
307
 
308
  # --- 4. Generate the Scatter Plot for the Primary Metric ---
309
  plots: dict[str, go.Figure] = {}
ui_components.py CHANGED
@@ -588,7 +588,7 @@ def create_leaderboard_display(
588
  if "Score" in col or "Cost" in col:
589
  num_score_cost_cols += 1
590
  dynamic_widths = [90] * num_score_cost_cols
591
- fixed_end_widths = [90, 50]
592
  # 5. Combine all the lists to create the final, fully dynamic list.
593
  final_column_widths = fixed_start_widths + dynamic_widths + fixed_end_widths
594
 
@@ -725,6 +725,7 @@ def create_benchmark_details_display(
725
  'Attempted Benchmark',
726
  benchmark_score_col,
727
  benchmark_cost_col,
 
728
  'Logs'
729
  ]
730
  for col in desired_cols_in_order:
@@ -775,7 +776,8 @@ def create_benchmark_details_display(
775
  datatype=df_datatypes,
776
  interactive=False,
777
  wrap=True,
778
- column_widths=[40, 40, 200, 150, 175, 85, 100, 100, 40],
 
779
  elem_classes=["wrap-header-df"]
780
  )
781
  legend_markdown = create_legend_markdown(benchmark_name)
 
588
  if "Score" in col or "Cost" in col:
589
  num_score_cost_cols += 1
590
  dynamic_widths = [90] * num_score_cost_cols
591
+ fixed_end_widths = [90, 100, 50]
592
  # 5. Combine all the lists to create the final, fully dynamic list.
593
  final_column_widths = fixed_start_widths + dynamic_widths + fixed_end_widths
594
 
 
725
  'Attempted Benchmark',
726
  benchmark_score_col,
727
  benchmark_cost_col,
728
+ 'Date',
729
  'Logs'
730
  ]
731
  for col in desired_cols_in_order:
 
776
  datatype=df_datatypes,
777
  interactive=False,
778
  wrap=True,
779
+ column_widths=[40, 40, 200, 150, 175, 85, 100, 100, 80, 40],
780
+ show_search="search",
781
  elem_classes=["wrap-header-df"]
782
  )
783
  legend_markdown = create_legend_markdown(benchmark_name)