abdulfatir commited on
Commit
5c6559f
·
1 Parent(s): 6055912

Update chronos-2 link

Browse files
Files changed (1) hide show
  1. src/utils.py +7 -24
src/utils.py CHANGED
@@ -36,12 +36,7 @@ MODEL_CONFIG = {
36
  "chronos_bolt_small": ("amazon/chronos-bolt-small", "AWS", True, "DL"),
37
  "chronos_bolt_base": ("amazon/chronos-bolt-base", "AWS", True, "DL"),
38
  "chronos-bolt": ("amazon/chronos-bolt-base", "AWS", True, "DL"),
39
- "chronos-2": (
40
- "https://github.com/amazon-science/chronos-forecasting",
41
- "AWS",
42
- True,
43
- "DL",
44
- ),
45
  # Moirai Models
46
  "moirai_large": ("Salesforce/moirai-1.1-R-large", "Salesforce", True, "DL"),
47
  "moirai_base": ("Salesforce/moirai-1.1-R-base", "Salesforce", True, "DL"),
@@ -146,9 +141,7 @@ def format_leaderboard(df: pd.DataFrame):
146
  df["zero_shot"] = df["model_name"].apply(get_zero_shot_status)
147
  # Format leakage column: convert to int for all models, 0 for non-zero-shot
148
  df["training_corpus_overlap"] = df.apply(
149
- lambda row: int(round(row["training_corpus_overlap"] * 100))
150
- if row["zero_shot"] == "✓"
151
- else 0,
152
  axis=1,
153
  )
154
  df["link"] = df["model_name"].apply(get_model_link)
@@ -170,9 +163,7 @@ def format_leaderboard(df: pd.DataFrame):
170
  df.style.map(highlight_model_type_color, subset=["model_name"])
171
  .map(lambda x: "font-weight: bold", subset=["zero_shot"])
172
  .apply(
173
- lambda x: [
174
- "background-color: #f8f9fa" if i % 2 == 1 else "" for i in range(len(x))
175
- ],
176
  axis=0,
177
  )
178
  )
@@ -237,9 +228,7 @@ def construct_pairwise_chart(df: pd.DataFrame, col: str, metric_name: str):
237
  for c in [col, f"{col}_lower", f"{col}_upper"]:
238
  df[c] *= 100
239
 
240
- model_order = (
241
- df.groupby("model_1")[col].mean().sort_values(ascending=False).index.tolist()
242
- )
243
 
244
  tooltip = [
245
  alt.Tooltip("model_1:N", title="Model 1"),
@@ -297,9 +286,7 @@ def construct_pairwise_chart(df: pd.DataFrame, col: str, metric_name: str):
297
  )
298
 
299
 
300
- def construct_pivot_table_from_df(
301
- errors: pd.DataFrame, metric_name: str
302
- ) -> pd.io.formats.style.Styler:
303
  """Construct styled pivot table from precomputed DataFrame."""
304
 
305
  def highlight_by_position(styler):
@@ -333,9 +320,7 @@ def construct_pivot_table(
333
  baseline_model: str,
334
  leakage_imputation_model: str,
335
  ) -> pd.io.formats.style.Styler:
336
- errors = fev.pivot_table(
337
- summaries=summaries, metric_column=metric_name, task_columns=["task_name"]
338
- )
339
  train_overlap = (
340
  fev.pivot_table(
341
  summaries=summaries,
@@ -376,9 +361,7 @@ def construct_pivot_table(
376
  style_parts.append(f"color: {COLORS['leakage_impute']}")
377
  elif is_imputed_baseline.loc[row_idx, col_idx]:
378
  style_parts.append(f"color: {COLORS['failure_impute']}")
379
- elif not style_parts or (
380
- len(style_parts) == 1 and "font-weight" in style_parts[0]
381
- ):
382
  style_parts.append(f"color: {COLORS['text_default']}")
383
 
384
  if style_parts:
 
36
  "chronos_bolt_small": ("amazon/chronos-bolt-small", "AWS", True, "DL"),
37
  "chronos_bolt_base": ("amazon/chronos-bolt-base", "AWS", True, "DL"),
38
  "chronos-bolt": ("amazon/chronos-bolt-base", "AWS", True, "DL"),
39
+ "chronos-2": ("amazon/chronos-2", "AWS", True, "DL"),
 
 
 
 
 
40
  # Moirai Models
41
  "moirai_large": ("Salesforce/moirai-1.1-R-large", "Salesforce", True, "DL"),
42
  "moirai_base": ("Salesforce/moirai-1.1-R-base", "Salesforce", True, "DL"),
 
141
  df["zero_shot"] = df["model_name"].apply(get_zero_shot_status)
142
  # Format leakage column: convert to int for all models, 0 for non-zero-shot
143
  df["training_corpus_overlap"] = df.apply(
144
+ lambda row: int(round(row["training_corpus_overlap"] * 100)) if row["zero_shot"] == "✓" else 0,
 
 
145
  axis=1,
146
  )
147
  df["link"] = df["model_name"].apply(get_model_link)
 
163
  df.style.map(highlight_model_type_color, subset=["model_name"])
164
  .map(lambda x: "font-weight: bold", subset=["zero_shot"])
165
  .apply(
166
+ lambda x: ["background-color: #f8f9fa" if i % 2 == 1 else "" for i in range(len(x))],
 
 
167
  axis=0,
168
  )
169
  )
 
228
  for c in [col, f"{col}_lower", f"{col}_upper"]:
229
  df[c] *= 100
230
 
231
+ model_order = df.groupby("model_1")[col].mean().sort_values(ascending=False).index.tolist()
 
 
232
 
233
  tooltip = [
234
  alt.Tooltip("model_1:N", title="Model 1"),
 
286
  )
287
 
288
 
289
+ def construct_pivot_table_from_df(errors: pd.DataFrame, metric_name: str) -> pd.io.formats.style.Styler:
 
 
290
  """Construct styled pivot table from precomputed DataFrame."""
291
 
292
  def highlight_by_position(styler):
 
320
  baseline_model: str,
321
  leakage_imputation_model: str,
322
  ) -> pd.io.formats.style.Styler:
323
+ errors = fev.pivot_table(summaries=summaries, metric_column=metric_name, task_columns=["task_name"])
 
 
324
  train_overlap = (
325
  fev.pivot_table(
326
  summaries=summaries,
 
361
  style_parts.append(f"color: {COLORS['leakage_impute']}")
362
  elif is_imputed_baseline.loc[row_idx, col_idx]:
363
  style_parts.append(f"color: {COLORS['failure_impute']}")
364
+ elif not style_parts or (len(style_parts) == 1 and "font-weight" in style_parts[0]):
 
 
365
  style_parts.append(f"color: {COLORS['text_default']}")
366
 
367
  if style_parts: