Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,103 +1,206 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from transformers import pipeline
|
|
|
|
| 3 |
|
| 4 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
sentiment_pipeline = pipeline(
|
| 6 |
"sentiment-analysis",
|
| 7 |
-
model=
|
|
|
|
|
|
|
| 8 |
)
|
| 9 |
|
| 10 |
def analyze_sentiment(text):
|
| 11 |
"""
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
"""
|
| 14 |
if not text or text.strip() == "":
|
| 15 |
return {
|
| 16 |
"sentiment": "neutral",
|
| 17 |
-
"score": 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
"error": "Empty text"
|
| 19 |
}
|
| 20 |
|
| 21 |
try:
|
| 22 |
-
#
|
| 23 |
-
|
| 24 |
|
| 25 |
-
label
|
| 26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
-
#
|
| 29 |
-
|
| 30 |
-
sentiment = 'positive'
|
| 31 |
-
elif 'neg' in label:
|
| 32 |
-
sentiment = 'negative'
|
| 33 |
-
score = 1.0 - score # Negative için score'u ters çevir
|
| 34 |
-
else:
|
| 35 |
-
sentiment = 'neutral'
|
| 36 |
|
| 37 |
return {
|
| 38 |
-
"sentiment":
|
| 39 |
-
"score":
|
|
|
|
| 40 |
}
|
| 41 |
|
| 42 |
except Exception as e:
|
| 43 |
-
print(f"Error: {str(e)}")
|
| 44 |
return {
|
| 45 |
"sentiment": "neutral",
|
| 46 |
-
"score": 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
"error": str(e)
|
| 48 |
}
|
| 49 |
|
| 50 |
def gradio_interface(text):
|
| 51 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
result = analyze_sentiment(text)
|
| 53 |
|
| 54 |
sentiment = result['sentiment']
|
| 55 |
score = result['score']
|
|
|
|
| 56 |
|
| 57 |
-
# Emoji
|
| 58 |
emoji_map = {
|
| 59 |
'positive': '😊',
|
| 60 |
-
'negative': '
|
| 61 |
'neutral': '😐'
|
| 62 |
}
|
| 63 |
|
| 64 |
emoji = emoji_map.get(sentiment, '😐')
|
| 65 |
|
| 66 |
-
|
| 67 |
-
output
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
|
| 69 |
if "error" in result and result["error"] != "Empty text":
|
| 70 |
-
output += f"\n\n⚠️ Note
|
|
|
|
|
|
|
|
|
|
| 71 |
|
| 72 |
return output
|
| 73 |
|
| 74 |
def api_analyze(text):
|
| 75 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
return analyze_sentiment(text)
|
| 77 |
|
| 78 |
-
# Gradio
|
| 79 |
demo = gr.Interface(
|
| 80 |
fn=gradio_interface,
|
| 81 |
inputs=gr.Textbox(
|
| 82 |
-
lines=
|
| 83 |
-
placeholder="Enter text to analyze
|
| 84 |
-
label="Input Text"
|
| 85 |
),
|
| 86 |
-
outputs=gr.Markdown(label="Sentiment Analysis Result"),
|
| 87 |
-
title="
|
| 88 |
-
description="
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
examples=[
|
| 90 |
-
["This is amazing! I love it!"],
|
| 91 |
-
["I'm so
|
| 92 |
-
["The weather is okay today."],
|
| 93 |
-
["
|
| 94 |
-
["
|
| 95 |
-
["
|
| 96 |
-
["
|
|
|
|
|
|
|
| 97 |
],
|
| 98 |
-
theme=gr.themes.Soft(
|
| 99 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
)
|
| 101 |
|
| 102 |
if __name__ == "__main__":
|
| 103 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer
|
| 3 |
+
import torch
|
| 4 |
|
| 5 |
+
# 🌍 MULTILINGUAL MODEL - Supports 58 languages including Turkish and English
|
| 6 |
+
# Model: cardiffnlp/twitter-xlm-roberta-base-sentiment-multilingual
|
| 7 |
+
# Dataset: Twitter data in multiple languages
|
| 8 |
+
# Classes: Negative (0), Neutral (1), Positive (2)
|
| 9 |
+
|
| 10 |
+
MODEL_NAME = "cardiffnlp/twitter-xlm-roberta-base-sentiment-multilingual"
|
| 11 |
+
|
| 12 |
+
# Load model and tokenizer
|
| 13 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
| 14 |
+
model = AutoModelForSequenceClassification.from_pretrained(MODEL_NAME)
|
| 15 |
+
|
| 16 |
+
# Create pipeline for sentiment analysis
|
| 17 |
sentiment_pipeline = pipeline(
|
| 18 |
"sentiment-analysis",
|
| 19 |
+
model=model,
|
| 20 |
+
tokenizer=tokenizer,
|
| 21 |
+
return_all_scores=True
|
| 22 |
)
|
| 23 |
|
| 24 |
def analyze_sentiment(text):
|
| 25 |
"""
|
| 26 |
+
Analyzes sentiment of text in 58+ languages including Turkish and English.
|
| 27 |
+
|
| 28 |
+
Args:
|
| 29 |
+
text (str): Input text to analyze (any supported language)
|
| 30 |
+
|
| 31 |
+
Returns:
|
| 32 |
+
dict: {
|
| 33 |
+
"sentiment": "positive" | "neutral" | "negative",
|
| 34 |
+
"score": float (0.0 to 1.0),
|
| 35 |
+
"scores": {
|
| 36 |
+
"positive": float,
|
| 37 |
+
"neutral": float,
|
| 38 |
+
"negative": float
|
| 39 |
+
},
|
| 40 |
+
"language_detected": bool (future feature),
|
| 41 |
+
"error": str (optional)
|
| 42 |
+
}
|
| 43 |
"""
|
| 44 |
if not text or text.strip() == "":
|
| 45 |
return {
|
| 46 |
"sentiment": "neutral",
|
| 47 |
+
"score": 0.33,
|
| 48 |
+
"scores": {
|
| 49 |
+
"positive": 0.33,
|
| 50 |
+
"neutral": 0.34,
|
| 51 |
+
"negative": 0.33
|
| 52 |
+
},
|
| 53 |
"error": "Empty text"
|
| 54 |
}
|
| 55 |
|
| 56 |
try:
|
| 57 |
+
# Get all scores from the model
|
| 58 |
+
results = sentiment_pipeline(text)[0]
|
| 59 |
|
| 60 |
+
# Parse results - model returns list of dicts with label and score
|
| 61 |
+
scores_dict = {}
|
| 62 |
+
for item in results:
|
| 63 |
+
label = item['label'].lower()
|
| 64 |
+
score = item['score']
|
| 65 |
+
|
| 66 |
+
# Map model labels to our format
|
| 67 |
+
if 'negative' in label or label == 'label_0':
|
| 68 |
+
scores_dict['negative'] = round(score, 4)
|
| 69 |
+
elif 'neutral' in label or label == 'label_1':
|
| 70 |
+
scores_dict['neutral'] = round(score, 4)
|
| 71 |
+
elif 'positive' in label or label == 'label_2':
|
| 72 |
+
scores_dict['positive'] = round(score, 4)
|
| 73 |
|
| 74 |
+
# Determine the dominant sentiment
|
| 75 |
+
max_sentiment = max(scores_dict.items(), key=lambda x: x[1])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
|
| 77 |
return {
|
| 78 |
+
"sentiment": max_sentiment[0],
|
| 79 |
+
"score": max_sentiment[1],
|
| 80 |
+
"scores": scores_dict
|
| 81 |
}
|
| 82 |
|
| 83 |
except Exception as e:
|
| 84 |
+
print(f"❌ Error in sentiment analysis: {str(e)}")
|
| 85 |
return {
|
| 86 |
"sentiment": "neutral",
|
| 87 |
+
"score": 0.33,
|
| 88 |
+
"scores": {
|
| 89 |
+
"positive": 0.33,
|
| 90 |
+
"neutral": 0.34,
|
| 91 |
+
"negative": 0.33
|
| 92 |
+
},
|
| 93 |
"error": str(e)
|
| 94 |
}
|
| 95 |
|
| 96 |
def gradio_interface(text):
|
| 97 |
+
"""
|
| 98 |
+
Formats sentiment analysis for beautiful web display.
|
| 99 |
+
|
| 100 |
+
Args:
|
| 101 |
+
text (str): Input text
|
| 102 |
+
|
| 103 |
+
Returns:
|
| 104 |
+
str: Formatted markdown with emojis and detailed scores
|
| 105 |
+
"""
|
| 106 |
result = analyze_sentiment(text)
|
| 107 |
|
| 108 |
sentiment = result['sentiment']
|
| 109 |
score = result['score']
|
| 110 |
+
scores = result.get('scores', {})
|
| 111 |
|
| 112 |
+
# Emoji mapping for visual appeal
|
| 113 |
emoji_map = {
|
| 114 |
'positive': '😊',
|
| 115 |
+
'negative': '😢',
|
| 116 |
'neutral': '😐'
|
| 117 |
}
|
| 118 |
|
| 119 |
emoji = emoji_map.get(sentiment, '😐')
|
| 120 |
|
| 121 |
+
# Build beautiful markdown output
|
| 122 |
+
output = f"## {emoji} Sentiment: **{sentiment.upper()}**\n\n"
|
| 123 |
+
output += f"### 📊 Confidence: {score * 100:.1f}%\n\n"
|
| 124 |
+
output += "---\n\n"
|
| 125 |
+
output += "### 🎯 Detailed Scores:\n\n"
|
| 126 |
+
|
| 127 |
+
# Add progress bars for each sentiment
|
| 128 |
+
if scores:
|
| 129 |
+
for sent_type, sent_score in sorted(scores.items(), key=lambda x: x[1], reverse=True):
|
| 130 |
+
emoji_small = emoji_map.get(sent_type, '•')
|
| 131 |
+
percentage = sent_score * 100
|
| 132 |
+
bar_length = int(percentage / 5) # 20 chars max
|
| 133 |
+
bar = "█" * bar_length + "░" * (20 - bar_length)
|
| 134 |
+
output += f"{emoji_small} **{sent_type.capitalize()}**: {bar} {percentage:.1f}%\n\n"
|
| 135 |
|
| 136 |
if "error" in result and result["error"] != "Empty text":
|
| 137 |
+
output += f"\n\n⚠️ **Note:** {result['error']}"
|
| 138 |
+
|
| 139 |
+
output += "\n\n---\n\n"
|
| 140 |
+
output += "✨ **Multilingual AI** • 🌍 Supports 58+ languages including Turkish and English"
|
| 141 |
|
| 142 |
return output
|
| 143 |
|
| 144 |
def api_analyze(text):
|
| 145 |
+
"""
|
| 146 |
+
Direct API endpoint for programmatic access.
|
| 147 |
+
Returns raw JSON response.
|
| 148 |
+
|
| 149 |
+
Args:
|
| 150 |
+
text (str): Input text in any supported language
|
| 151 |
+
|
| 152 |
+
Returns:
|
| 153 |
+
dict: Sentiment analysis result
|
| 154 |
+
"""
|
| 155 |
return analyze_sentiment(text)
|
| 156 |
|
| 157 |
+
# 🎨 Beautiful Gradio Interface
|
| 158 |
demo = gr.Interface(
|
| 159 |
fn=gradio_interface,
|
| 160 |
inputs=gr.Textbox(
|
| 161 |
+
lines=5,
|
| 162 |
+
placeholder="Bir metin girin... / Enter text to analyze...",
|
| 163 |
+
label="📝 Input Text (Turkish, English, or 56+ other languages)"
|
| 164 |
),
|
| 165 |
+
outputs=gr.Markdown(label="🤖 AI Sentiment Analysis Result"),
|
| 166 |
+
title="🌍 Multilingual Chat Sentiment Analysis",
|
| 167 |
+
description="""
|
| 168 |
+
**Advanced AI-powered sentiment analysis** supporting **58+ languages** including Turkish and English.
|
| 169 |
+
|
| 170 |
+
🚀 **Powered by:** XLM-RoBERTa (Twitter-trained multilingual model)
|
| 171 |
+
|
| 172 |
+
✨ **Features:**
|
| 173 |
+
- 🇹🇷 Turkish language support
|
| 174 |
+
- 🇬🇧 English language support
|
| 175 |
+
- 🌍 56+ additional languages
|
| 176 |
+
- 😊😐😢 Positive, Neutral, Negative classification
|
| 177 |
+
- 📊 Detailed confidence scores
|
| 178 |
+
- ⚡ Real-time analysis
|
| 179 |
+
|
| 180 |
+
**Perfect for:** Chat applications, social media monitoring, customer feedback analysis
|
| 181 |
+
""",
|
| 182 |
examples=[
|
| 183 |
+
["This is amazing! I absolutely love it! 🎉"],
|
| 184 |
+
["I'm so disappointed and sad about this situation... 😞"],
|
| 185 |
+
["The weather is okay today, nothing special."],
|
| 186 |
+
["Bu harika! Çok mutluyum! 🎊"],
|
| 187 |
+
["Gerçekten çok kötü bir deneyim yaşadım. 😠"],
|
| 188 |
+
["İyi, fena değil. Normal bir gün."],
|
| 189 |
+
["¡Esto es increíble! Me encanta! 🌟"],
|
| 190 |
+
["Je suis très content de ce service! ❤️"],
|
| 191 |
+
["Это ужасно! Я очень разочарован. 😤"]
|
| 192 |
],
|
| 193 |
+
theme=gr.themes.Soft(
|
| 194 |
+
primary_hue="blue",
|
| 195 |
+
secondary_hue="cyan"
|
| 196 |
+
),
|
| 197 |
+
api_name="analyze",
|
| 198 |
+
allow_flagging="never"
|
| 199 |
)
|
| 200 |
|
| 201 |
if __name__ == "__main__":
|
| 202 |
+
print("🚀 Starting Multilingual Sentiment Analysis Service...")
|
| 203 |
+
print(f"📦 Model: {MODEL_NAME}")
|
| 204 |
+
print("🌍 Languages: Turkish, English, Spanish, French, Arabic, Russian, and 52+ more")
|
| 205 |
+
print("✅ Server starting on http://127.0.0.1:7860")
|
| 206 |
+
demo.launch(server_name="0.0.0.0", server_port=7860)
|