Spaces:
Running
Running
Commit
·
db54b60
1
Parent(s):
d67e420
wip; h3!!!
Browse files- preprocess/CBN-data.ipynb +327 -200
- preprocess/h3_utils.py +189 -0
- preprocess/preprocess.ipynb +105 -15
- preprocess/utils.py +198 -0
preprocess/CBN-data.ipynb
CHANGED
|
@@ -15,9 +15,15 @@
|
|
| 15 |
"metadata": {},
|
| 16 |
"outputs": [],
|
| 17 |
"source": [
|
| 18 |
-
"from cng.utils import
|
|
|
|
|
|
|
| 19 |
"s3 = s3_client()\n",
|
| 20 |
"\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
"import zipfile\n",
|
| 22 |
"import os\n",
|
| 23 |
"import subprocess\n",
|
|
@@ -26,140 +32,15 @@
|
|
| 26 |
"import geopandas as gpd\n",
|
| 27 |
"import ibis\n",
|
| 28 |
"from ibis import _\n",
|
| 29 |
-
"con = ibis.duckdb.connect(extensions=[\"spatial\"])\n",
|
|
|
|
| 30 |
"\n",
|
| 31 |
"import rasterio\n",
|
|
|
|
|
|
|
| 32 |
"import numpy as np"
|
| 33 |
]
|
| 34 |
},
|
| 35 |
-
{
|
| 36 |
-
"cell_type": "markdown",
|
| 37 |
-
"id": "a6e4eac1-9bde-4d83-a386-60a055dfe402",
|
| 38 |
-
"metadata": {},
|
| 39 |
-
"source": [
|
| 40 |
-
"#### Helper functions"
|
| 41 |
-
]
|
| 42 |
-
},
|
| 43 |
-
{
|
| 44 |
-
"cell_type": "code",
|
| 45 |
-
"execution_count": null,
|
| 46 |
-
"id": "0fc80b2e-375a-4295-95cf-5bfc313b78fd",
|
| 47 |
-
"metadata": {},
|
| 48 |
-
"outputs": [],
|
| 49 |
-
"source": [
|
| 50 |
-
"def info(folder, file, bucket = \"public-ca30x30\", base_folder = 'CBN-data/'):\n",
|
| 51 |
-
" path = os.path.join(base_folder, folder, file)\n",
|
| 52 |
-
" return bucket, path \n",
|
| 53 |
-
" \n",
|
| 54 |
-
"def download(folder, file, file_name = None):\n",
|
| 55 |
-
" if not file_name: \n",
|
| 56 |
-
" file_name = file\n",
|
| 57 |
-
" bucket, path = info(folder, file)\n",
|
| 58 |
-
" s3.fget_object(bucket, path ,file_name) \n",
|
| 59 |
-
" return\n",
|
| 60 |
-
"\n",
|
| 61 |
-
"def upload(folder, file):\n",
|
| 62 |
-
" bucket, path = info(folder, file)\n",
|
| 63 |
-
" s3.fput_object(bucket, path ,file) \n",
|
| 64 |
-
" return\n",
|
| 65 |
-
"\n",
|
| 66 |
-
"def unzip(folder, file):\n",
|
| 67 |
-
" download(folder, file)\n",
|
| 68 |
-
" with zipfile.ZipFile(file, 'r') as zip_ref:\n",
|
| 69 |
-
" zip_ref.extractall()\n",
|
| 70 |
-
" return \n",
|
| 71 |
-
"\n",
|
| 72 |
-
"def upload_parquet(folder, file, gdf):\n",
|
| 73 |
-
" name, ext = os.path.splitext(file)\n",
|
| 74 |
-
" parquet_file = f\"{name}{'.parquet'}\"\n",
|
| 75 |
-
" gdf.to_parquet(parquet_file)\n",
|
| 76 |
-
" upload(folder, parquet_file)\n",
|
| 77 |
-
" return \n",
|
| 78 |
-
"\n",
|
| 79 |
-
"def process_vector(folder, file, file_name = None, gdf = None, crs=\"EPSG:3310\"):\n",
|
| 80 |
-
" if gdf is None:\n",
|
| 81 |
-
" gdf = gpd.read_file(file)\n",
|
| 82 |
-
" gdf = gdf.to_crs(crs)\n",
|
| 83 |
-
" gdf = gdf.rename_geometry('geom')\n",
|
| 84 |
-
" if file_name:\n",
|
| 85 |
-
" file = file_name\n",
|
| 86 |
-
" upload_parquet(folder, file, gdf)\n",
|
| 87 |
-
" return \n",
|
| 88 |
-
"\n",
|
| 89 |
-
"def reproject_raster(input_file, crs=\"EPSG:3310\"):\n",
|
| 90 |
-
" suffix = '_processed'\n",
|
| 91 |
-
" name, ext = os.path.splitext(input_file)\n",
|
| 92 |
-
" output_file = f\"{name}{suffix}{ext}\"\n",
|
| 93 |
-
" command = [\n",
|
| 94 |
-
" \"gdalwarp\",\n",
|
| 95 |
-
" \"-t_srs\", crs,\n",
|
| 96 |
-
" input_file,\n",
|
| 97 |
-
" output_file \n",
|
| 98 |
-
" ]\n",
|
| 99 |
-
" try:\n",
|
| 100 |
-
" subprocess.run(command, check=True)\n",
|
| 101 |
-
" print(f\"Reprojection successful!\")\n",
|
| 102 |
-
" except subprocess.CalledProcessError as e:\n",
|
| 103 |
-
" print(f\"Error occurred during reprojection: {e}\")\n",
|
| 104 |
-
" return output_file \n",
|
| 105 |
-
"\n",
|
| 106 |
-
"def make_cog(input_file, crs=\"EPSG:4326\"):\n",
|
| 107 |
-
" suffix = '_COG'\n",
|
| 108 |
-
" name, ext = os.path.splitext(input_file)\n",
|
| 109 |
-
" output_file = f\"{name}{suffix}{ext}\"\n",
|
| 110 |
-
" command = [\n",
|
| 111 |
-
" \"gdalwarp\",\n",
|
| 112 |
-
" \"-t_srs\", crs,\n",
|
| 113 |
-
" \"-of\", \"COG\",\n",
|
| 114 |
-
" input_file,\n",
|
| 115 |
-
" output_file \n",
|
| 116 |
-
" ]\n",
|
| 117 |
-
" try:\n",
|
| 118 |
-
" subprocess.run(command, check=True)\n",
|
| 119 |
-
" print(f\"Successful!\")\n",
|
| 120 |
-
" except subprocess.CalledProcessError as e:\n",
|
| 121 |
-
" print(f\"Error occurred during processing: {e}\")\n",
|
| 122 |
-
" return output_file \n",
|
| 123 |
-
"\n",
|
| 124 |
-
"def process_raster(folder, file, file_name = None):\n",
|
| 125 |
-
" if file_name:\n",
|
| 126 |
-
" file = file_name\n",
|
| 127 |
-
" output_file = reproject_raster(file)\n",
|
| 128 |
-
" upload(folder, output_file)\n",
|
| 129 |
-
" output_cog_file = make_cog(output_file)\n",
|
| 130 |
-
" upload(folder, output_cog_file)\n",
|
| 131 |
-
" return\n",
|
| 132 |
-
"\n",
|
| 133 |
-
"def filter_raster(folder, file, percentile):\n",
|
| 134 |
-
" with rasterio.open(file) as src:\n",
|
| 135 |
-
" data = src.read(1) # Read the first band\n",
|
| 136 |
-
" profile = src.profile\n",
|
| 137 |
-
" \n",
|
| 138 |
-
" # mask no data values\n",
|
| 139 |
-
" masked_data = np.ma.masked_equal(data, src.nodata)\n",
|
| 140 |
-
"\n",
|
| 141 |
-
" # compute percentile/threshold \n",
|
| 142 |
-
" p = np.percentile(masked_data.compressed(),percentile)\n",
|
| 143 |
-
" filtered = np.where(data >= p, data, src.nodata)\n",
|
| 144 |
-
" \n",
|
| 145 |
-
" name, ext = os.path.splitext(file)\n",
|
| 146 |
-
" new_file = f\"{name}{'_'}{percentile}{'percentile'}{ext}\"\n",
|
| 147 |
-
"\n",
|
| 148 |
-
" profile.update(dtype=rasterio.float64)\n",
|
| 149 |
-
" with rasterio.open(new_file, \"w\", **profile) as dst:\n",
|
| 150 |
-
" dst.write(filtered, 1)\n",
|
| 151 |
-
" \n",
|
| 152 |
-
" process_raster(folder, file)\n",
|
| 153 |
-
" return\n",
|
| 154 |
-
"\n",
|
| 155 |
-
"def convert_pmtiles(folder, parquet_file):\n",
|
| 156 |
-
" name, ext = os.path.splitext(parquet_file)\n",
|
| 157 |
-
" con.read_parquet(parquet_file).execute().set_crs('epsg:3310').to_crs('epsg:4326').to_file(name+'.geojson')\n",
|
| 158 |
-
" to_pmtiles(name+'.geojson', name+'.pmtiles', options = ['--extend-zooms-if-still-dropping'])\n",
|
| 159 |
-
" upload(folder, name+'.pmtiles')\n",
|
| 160 |
-
" return"
|
| 161 |
-
]
|
| 162 |
-
},
|
| 163 |
{
|
| 164 |
"cell_type": "markdown",
|
| 165 |
"id": "2219c881-1017-4def-9d0c-c83b5541b5d2",
|
|
@@ -175,8 +56,18 @@
|
|
| 175 |
"metadata": {},
|
| 176 |
"outputs": [],
|
| 177 |
"source": [
|
| 178 |
-
"
|
| 179 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 180 |
]
|
| 181 |
},
|
| 182 |
{
|
|
@@ -194,8 +85,15 @@
|
|
| 194 |
"metadata": {},
|
| 195 |
"outputs": [],
|
| 196 |
"source": [
|
| 197 |
-
"
|
| 198 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 199 |
]
|
| 200 |
},
|
| 201 |
{
|
|
@@ -213,8 +111,17 @@
|
|
| 213 |
"metadata": {},
|
| 214 |
"outputs": [],
|
| 215 |
"source": [
|
| 216 |
-
"
|
| 217 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 218 |
]
|
| 219 |
},
|
| 220 |
{
|
|
@@ -241,7 +148,7 @@
|
|
| 241 |
"outputs": [],
|
| 242 |
"source": [
|
| 243 |
"# download(folder = 'Habitat', file = 'CWHR13_2022.tif')\n",
|
| 244 |
-
"# process_raster(folder = 'Habitat', file = 'CWHR13_2022.tif')"
|
| 245 |
]
|
| 246 |
},
|
| 247 |
{
|
|
@@ -251,18 +158,27 @@
|
|
| 251 |
"metadata": {},
|
| 252 |
"outputs": [],
|
| 253 |
"source": [
|
| 254 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 255 |
"\n",
|
| 256 |
-
"
|
| 257 |
-
" \"gdalwarp\",\n",
|
| 258 |
-
" \"-of\", \"GTiff\",\n",
|
| 259 |
-
" 'fveg22_1.gdb',\n",
|
| 260 |
-
" 'fveg22_1.tif' \n",
|
| 261 |
-
" ]\n",
|
| 262 |
"\n",
|
| 263 |
-
"
|
| 264 |
-
"
|
| 265 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 266 |
]
|
| 267 |
},
|
| 268 |
{
|
|
@@ -288,12 +204,18 @@
|
|
| 288 |
"metadata": {},
|
| 289 |
"outputs": [],
|
| 290 |
"source": [
|
| 291 |
-
"
|
| 292 |
-
"
|
| 293 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 294 |
"\n",
|
| 295 |
-
"
|
| 296 |
-
"
|
| 297 |
]
|
| 298 |
},
|
| 299 |
{
|
|
@@ -323,7 +245,7 @@
|
|
| 323 |
" cols.append(col) #select only the cols we want + the new col. \n",
|
| 324 |
" rank_df = gdf[gdf[col]==5][cols]# filter ranks = 5\n",
|
| 325 |
" process_vector(folder = 'ACE_biodiversity/'+name, file = name+'.parquet',gdf = rank_df)\n",
|
| 326 |
-
" convert_pmtiles(folder ='ACE_biodiversity/'+name,
|
| 327 |
]
|
| 328 |
},
|
| 329 |
{
|
|
@@ -362,7 +284,7 @@
|
|
| 362 |
" threshold = gdf[col].quantile(percentile)\n",
|
| 363 |
" ace = gdf[gdf[col]>=threshold][cols]\n",
|
| 364 |
" process_vector(folder = 'ACE_biodiversity/'+name, file = name+'.parquet',gdf = ace)\n",
|
| 365 |
-
" convert_pmtiles(folder ='ACE_biodiversity/'+name,
|
| 366 |
"\n",
|
| 367 |
"\n",
|
| 368 |
"# calculate 80% percentile, filter to those >= threshold. \n",
|
|
@@ -392,8 +314,16 @@
|
|
| 392 |
"metadata": {},
|
| 393 |
"outputs": [],
|
| 394 |
"source": [
|
| 395 |
-
"
|
| 396 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 397 |
]
|
| 398 |
},
|
| 399 |
{
|
|
@@ -411,10 +341,16 @@
|
|
| 411 |
"metadata": {},
|
| 412 |
"outputs": [],
|
| 413 |
"source": [
|
| 414 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 415 |
"\n",
|
| 416 |
-
"
|
| 417 |
-
"
|
|
|
|
| 418 |
]
|
| 419 |
},
|
| 420 |
{
|
|
@@ -449,8 +385,15 @@
|
|
| 449 |
"metadata": {},
|
| 450 |
"outputs": [],
|
| 451 |
"source": [
|
| 452 |
-
"
|
| 453 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 454 |
]
|
| 455 |
},
|
| 456 |
{
|
|
@@ -524,14 +467,21 @@
|
|
| 524 |
"metadata": {},
|
| 525 |
"outputs": [],
|
| 526 |
"source": [
|
| 527 |
-
"
|
|
|
|
|
|
|
|
|
|
| 528 |
"\n",
|
| 529 |
"# only pick a subset \n",
|
|
|
|
| 530 |
"gdf = gpd.read_file('CA_geodatabase_wetlands.gdb')\n",
|
| 531 |
"wetlands = ['Freshwater Emergent Wetland', 'Freshwater Forested/Shrub Wetland', 'Estuarine and Marine Wetland']\n",
|
| 532 |
"gdf = gdf[gdf['WETLAND_TYPE'].isin(wetlands)]\n",
|
| 533 |
-
"
|
| 534 |
-
"
|
|
|
|
|
|
|
|
|
|
| 535 |
]
|
| 536 |
},
|
| 537 |
{
|
|
@@ -625,23 +575,39 @@
|
|
| 625 |
{
|
| 626 |
"cell_type": "code",
|
| 627 |
"execution_count": null,
|
| 628 |
-
"id": "
|
| 629 |
"metadata": {},
|
| 630 |
"outputs": [],
|
| 631 |
"source": [
|
| 632 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 633 |
"\n",
|
| 634 |
"# only pick a subset \n",
|
| 635 |
-
"
|
| 636 |
-
"
|
| 637 |
-
"
|
| 638 |
-
"
|
| 639 |
-
"
|
|
|
|
|
|
|
|
|
|
| 640 |
"\n",
|
| 641 |
-
"
|
| 642 |
-
"
|
| 643 |
-
"
|
| 644 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 645 |
]
|
| 646 |
},
|
| 647 |
{
|
|
@@ -678,6 +644,14 @@
|
|
| 678 |
"Only YEAR >= 2014. "
|
| 679 |
]
|
| 680 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 681 |
{
|
| 682 |
"cell_type": "code",
|
| 683 |
"execution_count": null,
|
|
@@ -685,14 +659,19 @@
|
|
| 685 |
"metadata": {},
|
| 686 |
"outputs": [],
|
| 687 |
"source": [
|
| 688 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 689 |
"gdf = gpd.read_file('fire23_1.gdb')\n",
|
| 690 |
"gdf = gdf[~gdf['YEAR_'].isna()]\n",
|
| 691 |
"gdf['YEAR_'] = gdf['YEAR_'].astype('int64')\n",
|
| 692 |
-
"gdf = gdf[gdf['YEAR_']>=2014]\n",
|
|
|
|
|
|
|
| 693 |
"\n",
|
| 694 |
-
"
|
| 695 |
-
"convert_pmtiles(folder ='Climate_risks/Historical_fire_perimeters', parquet_file ='calfire_2023.parquet')\n"
|
| 696 |
]
|
| 697 |
},
|
| 698 |
{
|
|
@@ -769,9 +748,14 @@
|
|
| 769 |
"metadata": {},
|
| 770 |
"outputs": [],
|
| 771 |
"source": [
|
| 772 |
-
"
|
| 773 |
-
"
|
| 774 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 775 |
]
|
| 776 |
},
|
| 777 |
{
|
|
@@ -789,10 +773,14 @@
|
|
| 789 |
"metadata": {},
|
| 790 |
"outputs": [],
|
| 791 |
"source": [
|
| 792 |
-
"
|
| 793 |
-
"
|
| 794 |
-
"
|
| 795 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 796 |
]
|
| 797 |
},
|
| 798 |
{
|
|
@@ -809,7 +797,42 @@
|
|
| 809 |
"id": "fc236b85-9fc4-4589-8dd9-5efb7f2e9614",
|
| 810 |
"metadata": {},
|
| 811 |
"outputs": [],
|
| 812 |
-
"source": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 813 |
},
|
| 814 |
{
|
| 815 |
"cell_type": "markdown",
|
|
@@ -826,16 +849,15 @@
|
|
| 826 |
"metadata": {},
|
| 827 |
"outputs": [],
|
| 828 |
"source": [
|
| 829 |
-
"
|
| 830 |
-
"
|
|
|
|
|
|
|
| 831 |
"\n",
|
| 832 |
"gdf = gpd.read_file('Priority Populations 4.0 Combined Layer.gdb')\n",
|
| 833 |
"gdf = gdf[gdf['Designatio'] =='Low-income community']\n",
|
| 834 |
-
"\n",
|
| 835 |
-
"\
|
| 836 |
-
"process_vector(folder = 'Progress_data_new_protection/Low_income_communities', \n",
|
| 837 |
-
" file = 'low_income_CalEnviroScreen4.parquet',gdf = gdf)\n",
|
| 838 |
-
"convert_pmtiles(folder ='Progress_data_new_protection/Low_income_communities', parquet_file ='low_income_CalEnviroScreen4.parquet')\n"
|
| 839 |
]
|
| 840 |
},
|
| 841 |
{
|
|
@@ -853,12 +875,117 @@
|
|
| 853 |
"metadata": {},
|
| 854 |
"outputs": [],
|
| 855 |
"source": [
|
| 856 |
-
"
|
| 857 |
-
"
|
| 858 |
-
"
|
| 859 |
-
"
|
| 860 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 861 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 862 |
}
|
| 863 |
],
|
| 864 |
"metadata": {
|
|
@@ -877,7 +1004,7 @@
|
|
| 877 |
"name": "python",
|
| 878 |
"nbconvert_exporter": "python",
|
| 879 |
"pygments_lexer": "ipython3",
|
| 880 |
-
"version": "3.12.
|
| 881 |
}
|
| 882 |
},
|
| 883 |
"nbformat": 4,
|
|
|
|
| 15 |
"metadata": {},
|
| 16 |
"outputs": [],
|
| 17 |
"source": [
|
| 18 |
+
"from cng.utils import *\n",
|
| 19 |
+
"from utils import *\n",
|
| 20 |
+
"from h3_utils import *\n",
|
| 21 |
"s3 = s3_client()\n",
|
| 22 |
"\n",
|
| 23 |
+
"duckdb_install_h3()\n",
|
| 24 |
+
"from minio.error import S3Error\n",
|
| 25 |
+
"\n",
|
| 26 |
+
"\n",
|
| 27 |
"import zipfile\n",
|
| 28 |
"import os\n",
|
| 29 |
"import subprocess\n",
|
|
|
|
| 32 |
"import geopandas as gpd\n",
|
| 33 |
"import ibis\n",
|
| 34 |
"from ibis import _\n",
|
| 35 |
+
"# con = ibis.duckdb.connect('temp',extensions = [\"spatial\", \"h3\"])\n",
|
| 36 |
+
"# set_secrets(con)\n",
|
| 37 |
"\n",
|
| 38 |
"import rasterio\n",
|
| 39 |
+
"from rasterio.features import shapes\n",
|
| 40 |
+
"from shapely.geometry import shape\n",
|
| 41 |
"import numpy as np"
|
| 42 |
]
|
| 43 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
{
|
| 45 |
"cell_type": "markdown",
|
| 46 |
"id": "2219c881-1017-4def-9d0c-c83b5541b5d2",
|
|
|
|
| 56 |
"metadata": {},
|
| 57 |
"outputs": [],
|
| 58 |
"source": [
|
| 59 |
+
"%%time \n",
|
| 60 |
+
"con = ibis.duckdb.connect('counties',extensions = [\"spatial\", \"h3\"])\n",
|
| 61 |
+
"set_secrets(con)\n",
|
| 62 |
+
"\n",
|
| 63 |
+
"folder = 'Counties'\n",
|
| 64 |
+
"name = 'CA_counties'\n",
|
| 65 |
+
"\n",
|
| 66 |
+
"# unzip(folder = folder, file = '30x30_Counties.zip')\n",
|
| 67 |
+
"# process_vector(folder = folder, file = f\"{name}.shp\")\n",
|
| 68 |
+
"# convert_pmtiles(folder = folder, file = f\"{name}.parquet\")\n",
|
| 69 |
+
"\n",
|
| 70 |
+
"convert_h3(con, s3, folder = folder, file = f\"{name}.parquet\", cols= \"COUNTY_NAM\")"
|
| 71 |
]
|
| 72 |
},
|
| 73 |
{
|
|
|
|
| 85 |
"metadata": {},
|
| 86 |
"outputs": [],
|
| 87 |
"source": [
|
| 88 |
+
"%%time \n",
|
| 89 |
+
"con = ibis.duckdb.connect('climate_zones',extensions = [\"spatial\", \"h3\"])\n",
|
| 90 |
+
"set_secrets(con)\n",
|
| 91 |
+
"\n",
|
| 92 |
+
"folder = 'Climate_zones'\n",
|
| 93 |
+
"name = 'climate_zones_10'\n",
|
| 94 |
+
"# download(folder = folder, file = 'clusters_10.tif')\n",
|
| 95 |
+
"# process_raster(s3, folder = folder, file = 'clusters_10.tif', file_name = f\"{name}.tif\")\n",
|
| 96 |
+
"convert_h3(con, s3, folder = folder, file = f\"{name}_processed.parquet\", cols= \"id\")"
|
| 97 |
]
|
| 98 |
},
|
| 99 |
{
|
|
|
|
| 111 |
"metadata": {},
|
| 112 |
"outputs": [],
|
| 113 |
"source": [
|
| 114 |
+
"%%time \n",
|
| 115 |
+
"con = ibis.duckdb.connect('ecoregion',extensions = [\"spatial\", \"h3\"])\n",
|
| 116 |
+
"set_secrets(con)\n",
|
| 117 |
+
"\n",
|
| 118 |
+
"folder = 'Ecoregion'\n",
|
| 119 |
+
"name = 'ACE_ecoregions'\n",
|
| 120 |
+
"\n",
|
| 121 |
+
"unzip(folder = folder, file = '30x30_Ecoregions.zip')\n",
|
| 122 |
+
"process_vector(folder = folder, file = f\"{name}.shp\")\n",
|
| 123 |
+
"\n",
|
| 124 |
+
"convert_h3(con, s3, folder = folder, file = f\"{name}.parquet\", cols= 'CA_Ecoregi')"
|
| 125 |
]
|
| 126 |
},
|
| 127 |
{
|
|
|
|
| 148 |
"outputs": [],
|
| 149 |
"source": [
|
| 150 |
"# download(folder = 'Habitat', file = 'CWHR13_2022.tif')\n",
|
| 151 |
+
"# process_raster(s3, folder = 'Habitat', file = 'CWHR13_2022.tif')"
|
| 152 |
]
|
| 153 |
},
|
| 154 |
{
|
|
|
|
| 158 |
"metadata": {},
|
| 159 |
"outputs": [],
|
| 160 |
"source": [
|
| 161 |
+
"%%time\n",
|
| 162 |
+
"con = ibis.duckdb.connect('habitat',extensions = [\"spatial\", \"h3\"])\n",
|
| 163 |
+
"set_secrets(con)\n",
|
| 164 |
+
"\n",
|
| 165 |
+
"folder = 'Habitat'\n",
|
| 166 |
+
"name = 'fveg22_1'\n",
|
| 167 |
"\n",
|
| 168 |
+
"# unzip(folder = folder, file = 'fveg221gdb.zip')\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 169 |
"\n",
|
| 170 |
+
"# command = [\n",
|
| 171 |
+
"# \"gdalwarp\",\n",
|
| 172 |
+
"# \"-of\", \"GTiff\",\n",
|
| 173 |
+
"# 'fveg22_1.gdb',\n",
|
| 174 |
+
"# 'fveg22_1.tif' \n",
|
| 175 |
+
"# ]\n",
|
| 176 |
+
"\n",
|
| 177 |
+
"# subprocess.run(command, check=True)\n",
|
| 178 |
+
"process_raster(s3, folder = folder, file = f\"{name}.tif\")\n",
|
| 179 |
+
"upload(folder = folder, file = f'{name}_processed.tif.aux.xml')\n",
|
| 180 |
+
"\n",
|
| 181 |
+
"convert_h3(con, s3, folder = folder, file = f\"{name}_processed.parquet\", cols= \"id\")"
|
| 182 |
]
|
| 183 |
},
|
| 184 |
{
|
|
|
|
| 204 |
"metadata": {},
|
| 205 |
"outputs": [],
|
| 206 |
"source": [
|
| 207 |
+
"%%time \n",
|
| 208 |
+
"folder = 'ACE_biodiversity'\n",
|
| 209 |
+
"name = 'ACE_terrestrial_biodiversity_summary_ds2739'\n",
|
| 210 |
+
"\n",
|
| 211 |
+
"download(folder = folder, file = 'Terrestrial_Biodiversity_Summary_-_ACE_[ds2739].geojson',\n",
|
| 212 |
+
" file_name = f\"{name}.geojson\")\n",
|
| 213 |
+
"\n",
|
| 214 |
+
"process_vector(folder = folder, file = f\"{name}.geojson\")\n",
|
| 215 |
+
"# convert_pmtiles(folder = folder, file = f\"{name}.geojson\")\n",
|
| 216 |
"\n",
|
| 217 |
+
"convert_h3(con, s3, folder = folder, file = f\"{name}.parquet\", cols= \"OBJECTID\")\n",
|
| 218 |
+
"# gdf = gpd.read_parquet(f\"{name}.parquet\")\n"
|
| 219 |
]
|
| 220 |
},
|
| 221 |
{
|
|
|
|
| 245 |
" cols.append(col) #select only the cols we want + the new col. \n",
|
| 246 |
" rank_df = gdf[gdf[col]==5][cols]# filter ranks = 5\n",
|
| 247 |
" process_vector(folder = 'ACE_biodiversity/'+name, file = name+'.parquet',gdf = rank_df)\n",
|
| 248 |
+
" convert_pmtiles(folder ='ACE_biodiversity/'+name, file = name+'.parquet')\n"
|
| 249 |
]
|
| 250 |
},
|
| 251 |
{
|
|
|
|
| 284 |
" threshold = gdf[col].quantile(percentile)\n",
|
| 285 |
" ace = gdf[gdf[col]>=threshold][cols]\n",
|
| 286 |
" process_vector(folder = 'ACE_biodiversity/'+name, file = name+'.parquet',gdf = ace)\n",
|
| 287 |
+
" convert_pmtiles(folder ='ACE_biodiversity/'+name, file = name+'.parquet')\n",
|
| 288 |
"\n",
|
| 289 |
"\n",
|
| 290 |
"# calculate 80% percentile, filter to those >= threshold. \n",
|
|
|
|
| 314 |
"metadata": {},
|
| 315 |
"outputs": [],
|
| 316 |
"source": [
|
| 317 |
+
"%%time \n",
|
| 318 |
+
"con = ibis.duckdb.connect('plant',extensions = [\"spatial\", \"h3\"])\n",
|
| 319 |
+
"set_secrets(con)\n",
|
| 320 |
+
"\n",
|
| 321 |
+
"folder = 'Biodiversity_unique/Plant_richness'\n",
|
| 322 |
+
"name = 'species_D'\n",
|
| 323 |
+
"\n",
|
| 324 |
+
"download(folder = folder, file = f\"{name}.tif\")\n",
|
| 325 |
+
"filter_raster(folder = folder, file = f\"{name}.tif\", percentile = 80)\n",
|
| 326 |
+
"convert_h3(con, s3, folder = folder, file = f\"{name}_processed.parquet\", cols= \"id\")"
|
| 327 |
]
|
| 328 |
},
|
| 329 |
{
|
|
|
|
| 341 |
"metadata": {},
|
| 342 |
"outputs": [],
|
| 343 |
"source": [
|
| 344 |
+
"%%time \n",
|
| 345 |
+
"con = ibis.duckdb.connect('end_plant',extensions = [\"spatial\", \"h3\"])\n",
|
| 346 |
+
"set_secrets(con)\n",
|
| 347 |
+
"\n",
|
| 348 |
+
"folder = 'Biodiversity_unique/Rarityweighted_endemic_plant_richness'\n",
|
| 349 |
+
"name = 'endemicspecies_E'\n",
|
| 350 |
"\n",
|
| 351 |
+
"download(folder = folder, file = f\"{name}.tif\")\n",
|
| 352 |
+
"filter_raster(folder = folder, file = f\"{name}.tif\", percentile = 80)\n",
|
| 353 |
+
"convert_h3(con, s3, folder = folder, file = f\"{name}_processed.parquet\", cols= \"id\")"
|
| 354 |
]
|
| 355 |
},
|
| 356 |
{
|
|
|
|
| 385 |
"metadata": {},
|
| 386 |
"outputs": [],
|
| 387 |
"source": [
|
| 388 |
+
"%%time \n",
|
| 389 |
+
"con = ibis.duckdb.connect('CRN',extensions = [\"spatial\", \"h3\"])\n",
|
| 390 |
+
"set_secrets(con)\n",
|
| 391 |
+
"\n",
|
| 392 |
+
"folder = 'Connectivity_resilience/Resilient_connected_network_allcategories'\n",
|
| 393 |
+
"name = 'rcn_wIntactBioCat_caOnly_2020-10-27'\n",
|
| 394 |
+
"\n",
|
| 395 |
+
"process_raster(s3, folder = folder, file = f\"{name}.tif\")\n",
|
| 396 |
+
"convert_h3(con, s3, folder = folder, file = f\"{name}_processed.parquet\", cols= \"id\")"
|
| 397 |
]
|
| 398 |
},
|
| 399 |
{
|
|
|
|
| 467 |
"metadata": {},
|
| 468 |
"outputs": [],
|
| 469 |
"source": [
|
| 470 |
+
"%%time \n",
|
| 471 |
+
"\n",
|
| 472 |
+
"folder = 'Freshwater_resources/Wetlands'\n",
|
| 473 |
+
"name = 'CA_wetlands'\n",
|
| 474 |
"\n",
|
| 475 |
"# only pick a subset \n",
|
| 476 |
+
"unzip(folder = folder, file = 'CA_geodatabase_wetlands.zip')\n",
|
| 477 |
"gdf = gpd.read_file('CA_geodatabase_wetlands.gdb')\n",
|
| 478 |
"wetlands = ['Freshwater Emergent Wetland', 'Freshwater Forested/Shrub Wetland', 'Estuarine and Marine Wetland']\n",
|
| 479 |
"gdf = gdf[gdf['WETLAND_TYPE'].isin(wetlands)]\n",
|
| 480 |
+
"\n",
|
| 481 |
+
"process_vector(folder = folder, file = f\"{name}.parquet\", gdf = gdf)\n",
|
| 482 |
+
"# convert_pmtiles(folder =folder, file = f\"{name}.parquet\")\n",
|
| 483 |
+
"geom_to_h3(con, folder = folder, file = f\"{name}.parquet\", cols= ['ATTRIBUTE','WETLAND_TYPE','NWI_ID'])\n",
|
| 484 |
+
"\n"
|
| 485 |
]
|
| 486 |
},
|
| 487 |
{
|
|
|
|
| 575 |
{
|
| 576 |
"cell_type": "code",
|
| 577 |
"execution_count": null,
|
| 578 |
+
"id": "fdf7061f-7598-4303-bb77-38f836feac8a",
|
| 579 |
"metadata": {},
|
| 580 |
"outputs": [],
|
| 581 |
"source": [
|
| 582 |
+
"%%time \n",
|
| 583 |
+
"\n",
|
| 584 |
+
"folder = 'NBS_agriculture/Farmland'\n",
|
| 585 |
+
"unzip(folder = folder, file = 'Important_Farmland_2018.zip')\n",
|
| 586 |
+
"\n",
|
| 587 |
+
"folder = 'NBS_agriculture/Farmland_all'\n",
|
| 588 |
+
"name = 'Important_Farmland_2018'\n",
|
| 589 |
+
"process_vector(folder = folder, file = f\"{name}.gdb\")\n",
|
| 590 |
+
"# convert_pmtiles(folder = folder, file =f\"{name}.parquet\")\n",
|
| 591 |
+
"convert_h3(con, s3, folder = folder, file = f\"{name}.parquet\", cols= ['county_nam','polygon_ty'])\n",
|
| 592 |
"\n",
|
| 593 |
"# only pick a subset \n",
|
| 594 |
+
"folder = 'NBS_agriculture/Farmland_all/Farmland'\n",
|
| 595 |
+
"name = 'Farmland_2018'\n",
|
| 596 |
+
"# gdf = gpd.read_file('Important_Farmland_2018.gdb')\n",
|
| 597 |
+
"# farmland_type = ['P','S','L','U'] # prime, statewide importance, local importance, unique\n",
|
| 598 |
+
"# gdf_farmland = gdf[gdf['polygon_ty'].isin(farmland_type)]\n",
|
| 599 |
+
"# process_vector(folder = folder, file = f\"{name}.parquet\", gdf = gdf_farmland)\n",
|
| 600 |
+
"# convert_pmtiles(folder = folder, file =f\"{name}.parquet\")\n",
|
| 601 |
+
"\n",
|
| 602 |
"\n",
|
| 603 |
+
"\n",
|
| 604 |
+
"# grazing lands \n",
|
| 605 |
+
"folder = 'NBS_agriculture/Farmland_all/Lands_suitable_grazing'\n",
|
| 606 |
+
"name = 'Grazing_land_2018'\n",
|
| 607 |
+
"\n",
|
| 608 |
+
"# gdf_grazing = gdf[gdf['polygon_ty'] == 'G']\n",
|
| 609 |
+
"# process_vector(folder = folder, file = f\"{name}.parquet\", gdf = gdf_grazing)\n",
|
| 610 |
+
"# convert_pmtiles(folder = folder, file =f\"{name}.parquet\")\n"
|
| 611 |
]
|
| 612 |
},
|
| 613 |
{
|
|
|
|
| 644 |
"Only YEAR >= 2014. "
|
| 645 |
]
|
| 646 |
},
|
| 647 |
+
{
|
| 648 |
+
"cell_type": "code",
|
| 649 |
+
"execution_count": null,
|
| 650 |
+
"id": "425f9149-d8ac-437a-9572-301bd1b1bec8",
|
| 651 |
+
"metadata": {},
|
| 652 |
+
"outputs": [],
|
| 653 |
+
"source": []
|
| 654 |
+
},
|
| 655 |
{
|
| 656 |
"cell_type": "code",
|
| 657 |
"execution_count": null,
|
|
|
|
| 659 |
"metadata": {},
|
| 660 |
"outputs": [],
|
| 661 |
"source": [
|
| 662 |
+
"%%time \n",
|
| 663 |
+
"folder = 'Climate_risks/Historical_fire_perimeters'\n",
|
| 664 |
+
"name = 'calfire_2023'\n",
|
| 665 |
+
"\n",
|
| 666 |
+
"unzip(folder = folder, file = 'fire23-1gdb.zip')\n",
|
| 667 |
"gdf = gpd.read_file('fire23_1.gdb')\n",
|
| 668 |
"gdf = gdf[~gdf['YEAR_'].isna()]\n",
|
| 669 |
"gdf['YEAR_'] = gdf['YEAR_'].astype('int64')\n",
|
| 670 |
+
"# gdf = gdf[gdf['YEAR_']>=2014]\n",
|
| 671 |
+
"process_vector(folder = folder, file = f\"{name}.parquet\", gdf = gdf)\n",
|
| 672 |
+
"# convert_pmtiles(folder = folder, file = f\"{name}.parquet\")\n",
|
| 673 |
"\n",
|
| 674 |
+
"convert_h3(con, s3, folder = folder, file = f\"{name}.parquet\", cols= ['INC_NUM','FIRE_NAME','YEAR_'])"
|
|
|
|
| 675 |
]
|
| 676 |
},
|
| 677 |
{
|
|
|
|
| 748 |
"metadata": {},
|
| 749 |
"outputs": [],
|
| 750 |
"source": [
|
| 751 |
+
"%%time \n",
|
| 752 |
+
"folder = 'Progress_data_new_protection/Newly_counted_lands'\n",
|
| 753 |
+
"name = 'newly_counted_lands_2024'\n",
|
| 754 |
+
"\n",
|
| 755 |
+
"unzip(folder = folder, file = f\"{name}.shp.zip\")\n",
|
| 756 |
+
"process_vector(folder = folder, file = f\"{name}.shp\")\n",
|
| 757 |
+
"# convert_pmtiles(folder = folder, file = f\"{name}.parquet\")\n",
|
| 758 |
+
"convert_h3(con, s3, folder = folder, file = f\"{name}.parquet\", cols= ['ORIG_FID'])\n"
|
| 759 |
]
|
| 760 |
},
|
| 761 |
{
|
|
|
|
| 773 |
"metadata": {},
|
| 774 |
"outputs": [],
|
| 775 |
"source": [
|
| 776 |
+
"%%time \n",
|
| 777 |
+
"folder = 'Progress_data_new_protection/DAC'\n",
|
| 778 |
+
"name = 'DAC_2022'\n",
|
| 779 |
+
"\n",
|
| 780 |
+
"unzip(folder = folder, file = 'sb535dacgdbf2022gdb.zip')\n",
|
| 781 |
+
"process_vector(folder = folder, file = 'SB535DACgdb_F_2022.gdb', file_name = f\"{name}.parquet\")\n",
|
| 782 |
+
"# convert_pmtiles(folder = folder, file = f\"{name}.parquet\")\n",
|
| 783 |
+
"convert_h3(con, s3, folder = folder, file = f\"{name}.parquet\", cols= ['GEOID'])\n"
|
| 784 |
]
|
| 785 |
},
|
| 786 |
{
|
|
|
|
| 797 |
"id": "fc236b85-9fc4-4589-8dd9-5efb7f2e9614",
|
| 798 |
"metadata": {},
|
| 799 |
"outputs": [],
|
| 800 |
+
"source": [
|
| 801 |
+
"%%time \n",
|
| 802 |
+
"con = ibis.duckdb.connect('priority_pop',extensions = [\"spatial\", \"h3\"])\n",
|
| 803 |
+
"set_secrets(con)\n",
|
| 804 |
+
"\n",
|
| 805 |
+
"folder = 'Progress_data_new_protection/Priority_populations'\n",
|
| 806 |
+
"name = 'CalEnviroScreen4'\n",
|
| 807 |
+
"unzip(folder = folder, file = 'Priority Populations 4.0 Geodatabase.zip')\n",
|
| 808 |
+
"\n",
|
| 809 |
+
"gdf = (con.read_geo('Priority Populations 4.0 Combined Layer.gdb')\n",
|
| 810 |
+
" .mutate(id=ibis.row_number().over()) #making a unique id \n",
|
| 811 |
+
" ).execute().set_crs('EPSG:3857')\n",
|
| 812 |
+
"\n",
|
| 813 |
+
"process_vector(folder = folder, file = 'Priority Populations 4.0 Combined Layer.gdb',\n",
|
| 814 |
+
" file_name = f\"{name}.parquet\", gdf = gdf)\n",
|
| 815 |
+
"\n",
|
| 816 |
+
"# convert_pmtiles(folder = folder, file = f\"{name}.parquet\")\n",
|
| 817 |
+
"convert_h3(con, s3, folder = folder, file = f\"{name}.parquet\", cols= [\"id\"])\n"
|
| 818 |
+
]
|
| 819 |
+
},
|
| 820 |
+
{
|
| 821 |
+
"cell_type": "code",
|
| 822 |
+
"execution_count": null,
|
| 823 |
+
"id": "e64129da-f369-425f-afcc-bc595a89fb7d",
|
| 824 |
+
"metadata": {},
|
| 825 |
+
"outputs": [],
|
| 826 |
+
"source": [
|
| 827 |
+
"file = f\"{name}.parquet\"\n",
|
| 828 |
+
"folder = 'Progress_data_new_protection/Priority_populations'\n",
|
| 829 |
+
"name = 'CalEnviroScreen4'\n",
|
| 830 |
+
"bucket, path = info(folder, file)\n",
|
| 831 |
+
"# path, file = os.path.split(path)\n",
|
| 832 |
+
"# name, ext = os.path.splitext(file)\n",
|
| 833 |
+
"# join_chunked(bucket, path, file)\n",
|
| 834 |
+
"con.read_parquet(f\"s3://{bucket}/{folder}/hex/{file}_part_000.parquet\").head(10).execute()"
|
| 835 |
+
]
|
| 836 |
},
|
| 837 |
{
|
| 838 |
"cell_type": "markdown",
|
|
|
|
| 849 |
"metadata": {},
|
| 850 |
"outputs": [],
|
| 851 |
"source": [
|
| 852 |
+
"folder = 'Progress_data_new_protection/Low_income_communities'\n",
|
| 853 |
+
"name = 'low_income_CalEnviroScreen4'\n",
|
| 854 |
+
"\n",
|
| 855 |
+
"unzip(folder = folder, file = 'Priority Populations 4.0 Geodatabase.zip')\n",
|
| 856 |
"\n",
|
| 857 |
"gdf = gpd.read_file('Priority Populations 4.0 Combined Layer.gdb')\n",
|
| 858 |
"gdf = gdf[gdf['Designatio'] =='Low-income community']\n",
|
| 859 |
+
"process_vector(folder = folder, file = f\"{name}.parquet\", gdf = gdf)\n",
|
| 860 |
+
"convert_pmtiles(folder = folder, file = f\"{name}.parquet\")"
|
|
|
|
|
|
|
|
|
|
| 861 |
]
|
| 862 |
},
|
| 863 |
{
|
|
|
|
| 875 |
"metadata": {},
|
| 876 |
"outputs": [],
|
| 877 |
"source": [
|
| 878 |
+
"folder = 'Progress_data_new_protection/Land_Status_Zone_Ecoregion_Counties'\n",
|
| 879 |
+
"name = 'all_regions_reGAP_county_eco'\n",
|
| 880 |
+
"\n",
|
| 881 |
+
"unzip(folder = folder, file = 'Land_Status_Zone_Ecoregion_Counties.shp.zip')\n",
|
| 882 |
+
"process_vector(folder = folder, file = 'Land_Status_Zone_Ecoregion_Counties.shp',\n",
|
| 883 |
+
" file_name = f\"{name}.parquet\")\n",
|
| 884 |
+
"convert_pmtiles(folder = folder, file = f\"{name}.parquet\")"
|
| 885 |
+
]
|
| 886 |
+
},
|
| 887 |
+
{
|
| 888 |
+
"cell_type": "markdown",
|
| 889 |
+
"id": "df6e2e1e-b74f-4b14-8140-7e425a3dec20",
|
| 890 |
+
"metadata": {},
|
| 891 |
+
"source": [
|
| 892 |
+
"# CA Nature data"
|
| 893 |
+
]
|
| 894 |
+
},
|
| 895 |
+
{
|
| 896 |
+
"cell_type": "code",
|
| 897 |
+
"execution_count": null,
|
| 898 |
+
"id": "ecc0f168-badd-4e4d-b97b-ee7891afaa4e",
|
| 899 |
+
"metadata": {},
|
| 900 |
+
"outputs": [],
|
| 901 |
+
"source": [
|
| 902 |
+
"# def convert_h3_2(con, folder, file, cols, zoom = \"8\"):\n",
|
| 903 |
+
"# cols = \", \".join(cols) if isinstance(cols,list) else cols #unpack columns \n",
|
| 904 |
+
"# bucket = 'public-ca30x30'\n",
|
| 905 |
+
"# name = 'ca-30x30-base'\n",
|
| 906 |
+
"# file = 'ca-30x30-base.parquet'\n",
|
| 907 |
+
"# folder = \"Preprocessing\"\n",
|
| 908 |
+
"# name= name.replace('-','')\n",
|
| 909 |
+
"\n",
|
| 910 |
+
"\n",
|
| 911 |
+
"# # reproject \n",
|
| 912 |
+
"# # (con.read_parquet(f\"s3://{bucket}/{file}\")\n",
|
| 913 |
+
"# # .mutate(geom = _.geom.convert('epsg:3310','epsg:4326'))\n",
|
| 914 |
+
"# # ).to_parquet(f\"s3://{bucket}/hex/{file}\")\n",
|
| 915 |
+
"\n",
|
| 916 |
+
"# con.read_parquet(f\"s3://{bucket}/{folder}/{file}\", table_name = name)\n",
|
| 917 |
+
"\n",
|
| 918 |
+
"# con.sql(f'''\n",
|
| 919 |
+
"# WITH t2 AS (\n",
|
| 920 |
+
"# WITH t1 AS (\n",
|
| 921 |
+
"# SELECT {cols}, ST_Dump(geom) AS geom \n",
|
| 922 |
+
"# FROM {name}\n",
|
| 923 |
+
"# ) \n",
|
| 924 |
+
"# SELECT {cols},\n",
|
| 925 |
+
"# h3_polygon_wkt_to_cells_string(UNNEST(geom).geom, {zoom}) AS h{zoom}\n",
|
| 926 |
+
"# FROM t1\n",
|
| 927 |
+
"# )\n",
|
| 928 |
+
"# SELECT *, UNNEST(h{zoom}) AS h{zoom} FROM t2\n",
|
| 929 |
+
"# ''').to_parquet(f\"s3://{bucket}/{folder}/hex/{file}\")"
|
| 930 |
+
]
|
| 931 |
+
},
|
| 932 |
+
{
|
| 933 |
+
"cell_type": "code",
|
| 934 |
+
"execution_count": null,
|
| 935 |
+
"id": "16f9f330-c10c-4cec-9eba-0878aab9a5f7",
|
| 936 |
+
"metadata": {},
|
| 937 |
+
"outputs": [],
|
| 938 |
+
"source": [
|
| 939 |
+
"%%time \n",
|
| 940 |
+
"con = ibis.duckdb.connect('ca_30x30_base',extensions = [\"spatial\", \"h3\"])\n",
|
| 941 |
+
"set_secrets(con)\n",
|
| 942 |
+
"\n",
|
| 943 |
+
"# file = 'ca-30x30-base.parquet'\n",
|
| 944 |
+
"folder = \"Preprocessing\"\n",
|
| 945 |
+
"name = 'ca-30x30-base'\n",
|
| 946 |
+
"# download(folder = folder, file = f\"{name}.parquet\")\n",
|
| 947 |
+
"\n",
|
| 948 |
+
"# gdf = gpd.read_parquet(f\"{name}.parquet\")\n",
|
| 949 |
+
"process_vector(folder = folder, file = f\"{name}.parquet\")\n",
|
| 950 |
+
"convert_h3(con, s3, folder = folder, file = f\"{name}.parquet\", cols= [\"id\"])\n",
|
| 951 |
+
"\n",
|
| 952 |
+
"# convert_h3_2(con, folder = folder, file = f\"{name}.parquet\", cols= [\"id\"])\n",
|
| 953 |
+
"\n"
|
| 954 |
+
]
|
| 955 |
+
},
|
| 956 |
+
{
|
| 957 |
+
"cell_type": "code",
|
| 958 |
+
"execution_count": null,
|
| 959 |
+
"id": "908786ec-2a86-4fb0-a47a-9de364254806",
|
| 960 |
+
"metadata": {},
|
| 961 |
+
"outputs": [],
|
| 962 |
+
"source": [
|
| 963 |
+
"# url = f\"s3://public-ca30x30/{folder}/hex/{name}.parquet\"\n",
|
| 964 |
+
"# # url = f\"s3://public-ca30x30/{folder}/{name}.parquet\"\n",
|
| 965 |
+
"\n",
|
| 966 |
+
"# con.read_parquet(url).head(10).execute()\n"
|
| 967 |
+
]
|
| 968 |
+
},
|
| 969 |
+
{
|
| 970 |
+
"cell_type": "code",
|
| 971 |
+
"execution_count": null,
|
| 972 |
+
"id": "65d98aa3-041f-42d6-8448-6fa8a05f5850",
|
| 973 |
+
"metadata": {},
|
| 974 |
+
"outputs": [],
|
| 975 |
+
"source": [
|
| 976 |
+
"# file = 'ca-30x30-base.parquet'\n",
|
| 977 |
+
"# folder = \"Preprocessing\"\n",
|
| 978 |
+
"# bucket = 'public-ca30x30'\n",
|
| 979 |
+
"# con.read_parquet(f\"s3://{bucket}/{folder}/hex/{file}\").head(10).execute()"
|
| 980 |
]
|
| 981 |
+
},
|
| 982 |
+
{
|
| 983 |
+
"cell_type": "code",
|
| 984 |
+
"execution_count": null,
|
| 985 |
+
"id": "fa960a99-3c79-4e67-becf-a1cb397aa5fb",
|
| 986 |
+
"metadata": {},
|
| 987 |
+
"outputs": [],
|
| 988 |
+
"source": []
|
| 989 |
}
|
| 990 |
],
|
| 991 |
"metadata": {
|
|
|
|
| 1004 |
"name": "python",
|
| 1005 |
"nbconvert_exporter": "python",
|
| 1006 |
"pygments_lexer": "ipython3",
|
| 1007 |
+
"version": "3.12.9"
|
| 1008 |
}
|
| 1009 |
},
|
| 1010 |
"nbformat": 4,
|
preprocess/h3_utils.py
ADDED
|
@@ -0,0 +1,189 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
def geom_to_h3(con, name, cols, zoom):
|
| 3 |
+
"""
|
| 4 |
+
Computes hexes
|
| 5 |
+
"""
|
| 6 |
+
con.raw_sql(f'''
|
| 7 |
+
CREATE OR REPLACE TEMP TABLE t2 AS
|
| 8 |
+
WITH t1 AS (
|
| 9 |
+
SELECT {cols}, ST_Dump(geom) AS geom
|
| 10 |
+
FROM {name}
|
| 11 |
+
)
|
| 12 |
+
SELECT {cols},
|
| 13 |
+
h3_polygon_wkt_to_cells_string(UNNEST(geom).geom, {zoom}) AS h{zoom}
|
| 14 |
+
FROM t1
|
| 15 |
+
''')
|
| 16 |
+
|
| 17 |
+
def check_size(con, name, zoom, sample_size=100):
|
| 18 |
+
"""
|
| 19 |
+
Estimating size of geoms to decide if we need to process in chunks
|
| 20 |
+
"""
|
| 21 |
+
query = f"""
|
| 22 |
+
SELECT
|
| 23 |
+
avg(len(h3_polygon_wkt_to_cells_string(ST_AsText(geom), {zoom}))::DOUBLE) AS avg_h3_len,
|
| 24 |
+
max(len(h3_polygon_wkt_to_cells_string(ST_AsText(geom), {zoom}))) AS max_h3_len,
|
| 25 |
+
count(*) AS total_rows
|
| 26 |
+
FROM {name}
|
| 27 |
+
USING SAMPLE {sample_size}
|
| 28 |
+
"""
|
| 29 |
+
stats = con.sql(query).execute()
|
| 30 |
+
avg_len = stats.iloc[0]['avg_h3_len']
|
| 31 |
+
max_len = stats.iloc[0]['max_h3_len']
|
| 32 |
+
total_rows = con.table(name).count().execute()
|
| 33 |
+
|
| 34 |
+
est_total_h3 = avg_len * total_rows
|
| 35 |
+
|
| 36 |
+
print(f"Estimated total H3 cells: {est_total_h3:,.0f}")
|
| 37 |
+
print(f"Max H3 cells in one geometry: {max_len:,}")
|
| 38 |
+
|
| 39 |
+
return est_total_h3, max_len
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
def write_large_geoms(con, s3, bucket, path, name, zoom="8", geom_len_threshold=10_000):
|
| 43 |
+
"""
|
| 44 |
+
Individually processing large geoms (different from processing "chunks")
|
| 45 |
+
"""
|
| 46 |
+
offset = 0
|
| 47 |
+
i = 0
|
| 48 |
+
limit=3000
|
| 49 |
+
while True:
|
| 50 |
+
large_key = f"{path}/hex/{name}_large_{i:03d}.parquet"
|
| 51 |
+
print(f"🟠 Checking large geometry batch {i} → {large_key}")
|
| 52 |
+
|
| 53 |
+
# check if file already exists in minio
|
| 54 |
+
try:
|
| 55 |
+
s3.stat_object(bucket, large_key)
|
| 56 |
+
print(f"⏩ Skipping existing large batch: {large_key}")
|
| 57 |
+
offset += limit
|
| 58 |
+
i += 1
|
| 59 |
+
continue
|
| 60 |
+
except S3Error as err:
|
| 61 |
+
if err.code != "NoSuchKey":
|
| 62 |
+
raise
|
| 63 |
+
|
| 64 |
+
print(f"📝 Writing large geometry batch {i} → {large_key}")
|
| 65 |
+
q = con.sql(f'''
|
| 66 |
+
SELECT *, UNNEST(h{zoom}) AS h{zoom}
|
| 67 |
+
FROM t2
|
| 68 |
+
WHERE len(h{zoom}) > {geom_len_threshold}
|
| 69 |
+
LIMIT {limit} OFFSET {offset}
|
| 70 |
+
''')
|
| 71 |
+
|
| 72 |
+
q.to_parquet(f"s3://{bucket}/{large_key}")
|
| 73 |
+
|
| 74 |
+
if q.count().execute() == 0:
|
| 75 |
+
break
|
| 76 |
+
|
| 77 |
+
offset += limit
|
| 78 |
+
i += 1
|
| 79 |
+
|
| 80 |
+
return i
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
def join_large_geoms(con, s3, bucket, path, name):
|
| 84 |
+
"""
|
| 85 |
+
If we had to process large geoms individually, join those datasets after conversion.
|
| 86 |
+
"""
|
| 87 |
+
# check if any large files exist before trying to join
|
| 88 |
+
test_key = f"{path}/hex/{name}_large_000.parquet"
|
| 89 |
+
|
| 90 |
+
try:
|
| 91 |
+
s3.stat_object(bucket, test_key)
|
| 92 |
+
except S3Error as err:
|
| 93 |
+
if err.code == "NoSuchKey":
|
| 94 |
+
print("✅ No large geometry chunks to join.")
|
| 95 |
+
return
|
| 96 |
+
else:
|
| 97 |
+
raise
|
| 98 |
+
# join if it exists
|
| 99 |
+
con.raw_sql(f'''
|
| 100 |
+
COPY (
|
| 101 |
+
SELECT * FROM read_parquet('s3://{bucket}/{path}/hex/{name}_large_*.parquet')
|
| 102 |
+
)
|
| 103 |
+
TO 's3://{bucket}/{path}/hex/{name}_large.parquet'
|
| 104 |
+
(FORMAT PARQUET)
|
| 105 |
+
''')
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
def chunk_data(con, s3, bucket, path, name, zoom="8", limit=100_000, geom_len_threshold=10_000):
|
| 109 |
+
"""
|
| 110 |
+
Processing large files in chunks.
|
| 111 |
+
"""
|
| 112 |
+
offset = 0
|
| 113 |
+
i = 0
|
| 114 |
+
|
| 115 |
+
while True:
|
| 116 |
+
chunk_path = f"{path}/hex/{name}_chunk{i:03d}.parquet"
|
| 117 |
+
|
| 118 |
+
try:
|
| 119 |
+
s3.stat_object(bucket, chunk_path)
|
| 120 |
+
print(f"⏩ Skipping existing chunk: {chunk_path}")
|
| 121 |
+
offset += limit
|
| 122 |
+
i += 1
|
| 123 |
+
continue
|
| 124 |
+
except S3Error as err:
|
| 125 |
+
if err.code != "NoSuchKey":
|
| 126 |
+
raise
|
| 127 |
+
|
| 128 |
+
print(f"📝 Writing chunk {i} → {chunk_path}")
|
| 129 |
+
q = con.sql(f'''
|
| 130 |
+
SELECT *, UNNEST(h{zoom}) AS h{zoom}
|
| 131 |
+
FROM t2
|
| 132 |
+
WHERE len(h{zoom}) <= {geom_len_threshold}
|
| 133 |
+
LIMIT {limit} OFFSET {offset}
|
| 134 |
+
''')
|
| 135 |
+
q.to_parquet(f"s3://{bucket}/{chunk_path}")
|
| 136 |
+
if q.count().execute() == 0:
|
| 137 |
+
break
|
| 138 |
+
offset += limit
|
| 139 |
+
i += 1
|
| 140 |
+
|
| 141 |
+
# process large geometries using same threshold and limit
|
| 142 |
+
write_large_geoms(con, s3, bucket, path, name, zoom, geom_len_threshold=geom_len_threshold)
|
| 143 |
+
join_large_geoms(con, s3, bucket, path, name)
|
| 144 |
+
return i
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
def join_chunked(bucket, path, name):
|
| 149 |
+
"""
|
| 150 |
+
If we had to chunk the data, join those datasets after conversion.
|
| 151 |
+
"""
|
| 152 |
+
con.raw_sql(f'''
|
| 153 |
+
COPY (
|
| 154 |
+
SELECT * FROM read_parquet('s3://{bucket}/{path}/hex/{name}_chunk*.parquet')
|
| 155 |
+
)
|
| 156 |
+
TO 's3://{bucket}/{path}/hex/{name}.parquet'
|
| 157 |
+
(FORMAT PARQUET)
|
| 158 |
+
''')
|
| 159 |
+
|
| 160 |
+
# def convert_h3(con, folder, file, cols, zoom="8", limit=100_000, geom_len_threshold=10_000):
|
| 161 |
+
def convert_h3(con, s3, folder, file, cols, zoom="8", limit=100_000, geom_len_threshold=5_000):
|
| 162 |
+
"""
|
| 163 |
+
Driver function to convert geometries to h3
|
| 164 |
+
"""
|
| 165 |
+
cols = ", ".join(cols) if isinstance(cols, list) else cols
|
| 166 |
+
bucket, path = info(folder, file)
|
| 167 |
+
path, file = os.path.split(path)
|
| 168 |
+
name, ext = os.path.splitext(file)
|
| 169 |
+
name = name.replace('-', '')
|
| 170 |
+
|
| 171 |
+
print(f"Processing: {name}")
|
| 172 |
+
con.read_parquet(f"s3://{bucket}/{path}/{file}", table_name=name)
|
| 173 |
+
|
| 174 |
+
# Decide to chunk or not
|
| 175 |
+
est_total, max_per_geom = check_size(con, name, zoom)
|
| 176 |
+
# if est_total > 500_000 or max_per_geom > geom_len_threshold:
|
| 177 |
+
|
| 178 |
+
if est_total > 1_000_000 or max_per_geom > geom_len_threshold:
|
| 179 |
+
print("Chunking due to estimated size")
|
| 180 |
+
geom_to_h3(con, name, cols, zoom)
|
| 181 |
+
chunk_data(con, s3, bucket, path, name, zoom, limit, geom_len_threshold)
|
| 182 |
+
join_chunked(con, bucket, path, name)
|
| 183 |
+
else:
|
| 184 |
+
print("Writing single output")
|
| 185 |
+
geom_to_h3(con, name, cols, zoom)
|
| 186 |
+
con.sql(f'''
|
| 187 |
+
SELECT *, UNNEST(h{zoom}) AS h{zoom}
|
| 188 |
+
FROM t2
|
| 189 |
+
''').to_parquet(f"s3://{bucket}/{path}/hex/{name}.parquet")
|
preprocess/preprocess.ipynb
CHANGED
|
@@ -10,7 +10,7 @@
|
|
| 10 |
},
|
| 11 |
{
|
| 12 |
"cell_type": "code",
|
| 13 |
-
"execution_count":
|
| 14 |
"id": "f7e6298c-d886-432a-a1b7-c3fee914c24f",
|
| 15 |
"metadata": {
|
| 16 |
"editable": true,
|
|
@@ -25,12 +25,13 @@
|
|
| 25 |
"data_path = '../data/CBN-layers/'\n",
|
| 26 |
"os.chdir(data_path)\n",
|
| 27 |
"\n",
|
| 28 |
-
"from cng.utils import
|
| 29 |
"s3 = s3_client()\n",
|
| 30 |
"\n",
|
|
|
|
| 31 |
"import ibis\n",
|
| 32 |
-
"\n",
|
| 33 |
"from ibis import _\n",
|
|
|
|
| 34 |
"con = ibis.duckdb.connect(extensions=[\"spatial\"])\n",
|
| 35 |
"\n",
|
| 36 |
"import geopandas as gpd\n",
|
|
@@ -47,7 +48,7 @@
|
|
| 47 |
},
|
| 48 |
{
|
| 49 |
"cell_type": "code",
|
| 50 |
-
"execution_count":
|
| 51 |
"id": "63dd33b8-6d3c-4852-9899-6ed5775d19c0",
|
| 52 |
"metadata": {},
|
| 53 |
"outputs": [],
|
|
@@ -60,7 +61,13 @@
|
|
| 60 |
" else:\n",
|
| 61 |
" path = os.path.join(bucket,base_folder,folder,file)\n",
|
| 62 |
" url = minio+path\n",
|
| 63 |
-
" return url"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
]
|
| 65 |
},
|
| 66 |
{
|
|
@@ -73,14 +80,14 @@
|
|
| 73 |
},
|
| 74 |
{
|
| 75 |
"cell_type": "code",
|
| 76 |
-
"execution_count":
|
| 77 |
"id": "13214bbe-3a74-4247-981f-5a6eb6c486f5",
|
| 78 |
"metadata": {},
|
| 79 |
"outputs": [],
|
| 80 |
"source": [
|
| 81 |
"# CA Nature data \n",
|
| 82 |
-
"
|
| 83 |
-
"ca_raw_parquet = 'ca_areas.parquet'\n",
|
| 84 |
"\n",
|
| 85 |
"# Boundary of CA, used to computed 'non-conserved' areas\n",
|
| 86 |
"ca_boundary_parquet = get_url('Preprocessing','ca_boundary.parquet',base_folder = None)\n",
|
|
@@ -160,11 +167,45 @@
|
|
| 160 |
},
|
| 161 |
{
|
| 162 |
"cell_type": "code",
|
| 163 |
-
"execution_count":
|
| 164 |
"id": "0f9666d1-7c2b-45af-9399-e4189bba34f5",
|
| 165 |
"metadata": {},
|
| 166 |
-
"outputs": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 167 |
"source": [
|
|
|
|
| 168 |
"# match CA Nature schema \n",
|
| 169 |
"\n",
|
| 170 |
"non_conserved = (con.read_parquet(ca_nonconserved_url)\n",
|
|
@@ -200,7 +241,7 @@
|
|
| 200 |
},
|
| 201 |
{
|
| 202 |
"cell_type": "code",
|
| 203 |
-
"execution_count":
|
| 204 |
"id": "a3d4f189-1563-4868-9f1f-64d67569df27",
|
| 205 |
"metadata": {},
|
| 206 |
"outputs": [],
|
|
@@ -257,7 +298,7 @@
|
|
| 257 |
},
|
| 258 |
{
|
| 259 |
"cell_type": "code",
|
| 260 |
-
"execution_count":
|
| 261 |
"id": "a59c976b-3c36-40f9-a15b-cefcd155c647",
|
| 262 |
"metadata": {},
|
| 263 |
"outputs": [],
|
|
@@ -303,11 +344,60 @@
|
|
| 303 |
},
|
| 304 |
{
|
| 305 |
"cell_type": "code",
|
| 306 |
-
"execution_count":
|
| 307 |
"id": "4d6177e2-8ece-4eb9-acc2-5fb5c5beb8bb",
|
| 308 |
"metadata": {},
|
| 309 |
-
"outputs": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 310 |
"source": [
|
|
|
|
| 311 |
"counties = con.read_parquet('../CA_counties.parquet')\n",
|
| 312 |
"# ca = con.read_parquet(ca_temp_parquet)\n",
|
| 313 |
"\n",
|
|
@@ -570,7 +660,7 @@
|
|
| 570 |
"name": "python",
|
| 571 |
"nbconvert_exporter": "python",
|
| 572 |
"pygments_lexer": "ipython3",
|
| 573 |
-
"version": "3.12.
|
| 574 |
}
|
| 575 |
},
|
| 576 |
"nbformat": 4,
|
|
|
|
| 10 |
},
|
| 11 |
{
|
| 12 |
"cell_type": "code",
|
| 13 |
+
"execution_count": 1,
|
| 14 |
"id": "f7e6298c-d886-432a-a1b7-c3fee914c24f",
|
| 15 |
"metadata": {
|
| 16 |
"editable": true,
|
|
|
|
| 25 |
"data_path = '../data/CBN-layers/'\n",
|
| 26 |
"os.chdir(data_path)\n",
|
| 27 |
"\n",
|
| 28 |
+
"from cng.utils import set_secrets, s3_client, s3_cp, to_pmtiles\n",
|
| 29 |
"s3 = s3_client()\n",
|
| 30 |
"\n",
|
| 31 |
+
" \n",
|
| 32 |
"import ibis\n",
|
|
|
|
| 33 |
"from ibis import _\n",
|
| 34 |
+
"import ibis.expr.datatypes as dt\n",
|
| 35 |
"con = ibis.duckdb.connect(extensions=[\"spatial\"])\n",
|
| 36 |
"\n",
|
| 37 |
"import geopandas as gpd\n",
|
|
|
|
| 48 |
},
|
| 49 |
{
|
| 50 |
"cell_type": "code",
|
| 51 |
+
"execution_count": 2,
|
| 52 |
"id": "63dd33b8-6d3c-4852-9899-6ed5775d19c0",
|
| 53 |
"metadata": {},
|
| 54 |
"outputs": [],
|
|
|
|
| 61 |
" else:\n",
|
| 62 |
" path = os.path.join(bucket,base_folder,folder,file)\n",
|
| 63 |
" url = minio+path\n",
|
| 64 |
+
" return url\n",
|
| 65 |
+
"\n",
|
| 66 |
+
"\n",
|
| 67 |
+
"# usage: t.mutate(geom_valid = ST_MakeValid(t.geom))\n",
|
| 68 |
+
"@ibis.udf.scalar.builtin\n",
|
| 69 |
+
"def ST_MakeValid(geom) -> dt.geometry:\n",
|
| 70 |
+
" ..."
|
| 71 |
]
|
| 72 |
},
|
| 73 |
{
|
|
|
|
| 80 |
},
|
| 81 |
{
|
| 82 |
"cell_type": "code",
|
| 83 |
+
"execution_count": 3,
|
| 84 |
"id": "13214bbe-3a74-4247-981f-5a6eb6c486f5",
|
| 85 |
"metadata": {},
|
| 86 |
"outputs": [],
|
| 87 |
"source": [
|
| 88 |
"# CA Nature data \n",
|
| 89 |
+
"ca_raw_parquet = \"https://data.source.coop/cboettig/ca30x30/ca_areas.parquet\"\n",
|
| 90 |
+
"# ca_raw_parquet = 'ca_areas.parquet'\n",
|
| 91 |
"\n",
|
| 92 |
"# Boundary of CA, used to computed 'non-conserved' areas\n",
|
| 93 |
"ca_boundary_parquet = get_url('Preprocessing','ca_boundary.parquet',base_folder = None)\n",
|
|
|
|
| 167 |
},
|
| 168 |
{
|
| 169 |
"cell_type": "code",
|
| 170 |
+
"execution_count": 7,
|
| 171 |
"id": "0f9666d1-7c2b-45af-9399-e4189bba34f5",
|
| 172 |
"metadata": {},
|
| 173 |
+
"outputs": [
|
| 174 |
+
{
|
| 175 |
+
"data": {
|
| 176 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 177 |
+
"model_id": "52ef18913f17417299860d91e36e9dbd",
|
| 178 |
+
"version_major": 2,
|
| 179 |
+
"version_minor": 0
|
| 180 |
+
},
|
| 181 |
+
"text/plain": [
|
| 182 |
+
"FloatProgress(value=0.0, layout=Layout(width='auto'), style=ProgressStyle(bar_color='black'))"
|
| 183 |
+
]
|
| 184 |
+
},
|
| 185 |
+
"metadata": {},
|
| 186 |
+
"output_type": "display_data"
|
| 187 |
+
},
|
| 188 |
+
{
|
| 189 |
+
"name": "stdout",
|
| 190 |
+
"output_type": "stream",
|
| 191 |
+
"text": [
|
| 192 |
+
"CPU times: user 4min 28s, sys: 6.1 s, total: 4min 34s\n",
|
| 193 |
+
"Wall time: 2min 18s\n"
|
| 194 |
+
]
|
| 195 |
+
},
|
| 196 |
+
{
|
| 197 |
+
"data": {
|
| 198 |
+
"text/plain": [
|
| 199 |
+
"<minio.helpers.ObjectWriteResult at 0x7ff0943c7710>"
|
| 200 |
+
]
|
| 201 |
+
},
|
| 202 |
+
"execution_count": 7,
|
| 203 |
+
"metadata": {},
|
| 204 |
+
"output_type": "execute_result"
|
| 205 |
+
}
|
| 206 |
+
],
|
| 207 |
"source": [
|
| 208 |
+
"%%time \n",
|
| 209 |
"# match CA Nature schema \n",
|
| 210 |
"\n",
|
| 211 |
"non_conserved = (con.read_parquet(ca_nonconserved_url)\n",
|
|
|
|
| 241 |
},
|
| 242 |
{
|
| 243 |
"cell_type": "code",
|
| 244 |
+
"execution_count": 4,
|
| 245 |
"id": "a3d4f189-1563-4868-9f1f-64d67569df27",
|
| 246 |
"metadata": {},
|
| 247 |
"outputs": [],
|
|
|
|
| 298 |
},
|
| 299 |
{
|
| 300 |
"cell_type": "code",
|
| 301 |
+
"execution_count": 5,
|
| 302 |
"id": "a59c976b-3c36-40f9-a15b-cefcd155c647",
|
| 303 |
"metadata": {},
|
| 304 |
"outputs": [],
|
|
|
|
| 344 |
},
|
| 345 |
{
|
| 346 |
"cell_type": "code",
|
| 347 |
+
"execution_count": 6,
|
| 348 |
"id": "4d6177e2-8ece-4eb9-acc2-5fb5c5beb8bb",
|
| 349 |
"metadata": {},
|
| 350 |
+
"outputs": [
|
| 351 |
+
{
|
| 352 |
+
"data": {
|
| 353 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 354 |
+
"model_id": "09f24f1359a84ae2a4b69360cc8e852b",
|
| 355 |
+
"version_major": 2,
|
| 356 |
+
"version_minor": 0
|
| 357 |
+
},
|
| 358 |
+
"text/plain": [
|
| 359 |
+
"FloatProgress(value=0.0, layout=Layout(width='auto'), style=ProgressStyle(bar_color='black'))"
|
| 360 |
+
]
|
| 361 |
+
},
|
| 362 |
+
"metadata": {},
|
| 363 |
+
"output_type": "display_data"
|
| 364 |
+
},
|
| 365 |
+
{
|
| 366 |
+
"data": {
|
| 367 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 368 |
+
"model_id": "c10ce980d24e45b6bad9b8a70c176f2c",
|
| 369 |
+
"version_major": 2,
|
| 370 |
+
"version_minor": 0
|
| 371 |
+
},
|
| 372 |
+
"text/plain": [
|
| 373 |
+
"FloatProgress(value=0.0, layout=Layout(width='auto'), style=ProgressStyle(bar_color='black'))"
|
| 374 |
+
]
|
| 375 |
+
},
|
| 376 |
+
"metadata": {},
|
| 377 |
+
"output_type": "display_data"
|
| 378 |
+
},
|
| 379 |
+
{
|
| 380 |
+
"name": "stderr",
|
| 381 |
+
"output_type": "stream",
|
| 382 |
+
"text": [
|
| 383 |
+
"/opt/conda/lib/python3.12/site-packages/ibis/common/deferred.py:408: FutureWarning: `Value.case` is deprecated as of v10.0.0; use value.cases() or ibis.cases()\n",
|
| 384 |
+
" return func(*args, **kwargs)\n"
|
| 385 |
+
]
|
| 386 |
+
},
|
| 387 |
+
{
|
| 388 |
+
"ename": "NameError",
|
| 389 |
+
"evalue": "name 'non_conserved' is not defined",
|
| 390 |
+
"output_type": "error",
|
| 391 |
+
"traceback": [
|
| 392 |
+
"\u001b[31m---------------------------------------------------------------------------\u001b[39m",
|
| 393 |
+
"\u001b[31mNameError\u001b[39m Traceback (most recent call last)",
|
| 394 |
+
"\u001b[36mFile \u001b[39m\u001b[32m<timed exec>:50\u001b[39m\n",
|
| 395 |
+
"\u001b[31mNameError\u001b[39m: name 'non_conserved' is not defined"
|
| 396 |
+
]
|
| 397 |
+
}
|
| 398 |
+
],
|
| 399 |
"source": [
|
| 400 |
+
"%%time \n",
|
| 401 |
"counties = con.read_parquet('../CA_counties.parquet')\n",
|
| 402 |
"# ca = con.read_parquet(ca_temp_parquet)\n",
|
| 403 |
"\n",
|
|
|
|
| 660 |
"name": "python",
|
| 661 |
"nbconvert_exporter": "python",
|
| 662 |
"pygments_lexer": "ipython3",
|
| 663 |
+
"version": "3.12.9"
|
| 664 |
}
|
| 665 |
},
|
| 666 |
"nbformat": 4,
|
preprocess/utils.py
ADDED
|
@@ -0,0 +1,198 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from minio.error import S3Error
|
| 2 |
+
|
| 3 |
+
import zipfile
|
| 4 |
+
import os
|
| 5 |
+
import subprocess
|
| 6 |
+
|
| 7 |
+
import geopandas as gpd
|
| 8 |
+
import ibis
|
| 9 |
+
from ibis import _
|
| 10 |
+
|
| 11 |
+
import rasterio
|
| 12 |
+
from rasterio.features import shapes
|
| 13 |
+
from shapely.geometry import shape
|
| 14 |
+
import numpy as np
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
def info(folder, file, bucket = "public-ca30x30", base_folder = 'CBN-data/'):
|
| 18 |
+
"""
|
| 19 |
+
Extract minio path to upload/download data
|
| 20 |
+
"""
|
| 21 |
+
path = os.path.join(base_folder, folder, file)
|
| 22 |
+
# path = os.path.join(folder, file)
|
| 23 |
+
return bucket, path
|
| 24 |
+
|
| 25 |
+
def download(s3, folder, file, file_name = None):
|
| 26 |
+
"""
|
| 27 |
+
Downloading file from minio
|
| 28 |
+
"""
|
| 29 |
+
if not file_name:
|
| 30 |
+
file_name = file
|
| 31 |
+
bucket, path = info(folder, file)
|
| 32 |
+
s3.fget_object(bucket, path ,file_name)
|
| 33 |
+
return
|
| 34 |
+
|
| 35 |
+
def upload(s3, folder, file):
|
| 36 |
+
"""
|
| 37 |
+
Uploading file from minio
|
| 38 |
+
"""
|
| 39 |
+
bucket, path = info(folder, file)
|
| 40 |
+
s3.fput_object(bucket, path ,file)
|
| 41 |
+
return
|
| 42 |
+
|
| 43 |
+
def unzip(folder, file):
|
| 44 |
+
"""
|
| 45 |
+
Unzipping zip files
|
| 46 |
+
"""
|
| 47 |
+
download(s3, folder, file)
|
| 48 |
+
with zipfile.ZipFile(file, 'r') as zip_ref:
|
| 49 |
+
zip_ref.extractall()
|
| 50 |
+
return
|
| 51 |
+
|
| 52 |
+
# def process_vector(folder, file, file_name = None, gdf = None, crs="EPSG:3310"):
|
| 53 |
+
def process_vector(folder, file, file_name = None, gdf = None, crs="EPSG:4326"):
|
| 54 |
+
"""
|
| 55 |
+
Driver function to process vectors
|
| 56 |
+
"""
|
| 57 |
+
if gdf is None:
|
| 58 |
+
gdf = gpd.read_file(file)
|
| 59 |
+
if gdf.crs != crs:
|
| 60 |
+
gdf = gdf.to_crs(crs)
|
| 61 |
+
if gdf.geometry.name != 'geom':
|
| 62 |
+
gdf = gdf.rename_geometry('geom')
|
| 63 |
+
if file_name:
|
| 64 |
+
file = file_name
|
| 65 |
+
# upload_parquet(folder, file, gdf)
|
| 66 |
+
name, ext = os.path.splitext(file)
|
| 67 |
+
parquet_file = f"{name}{'.parquet'}"
|
| 68 |
+
gdf.to_parquet(parquet_file)
|
| 69 |
+
upload(s3, folder, parquet_file)
|
| 70 |
+
return
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
# def upload_parquet(folder, file, gdf):
|
| 74 |
+
# """
|
| 75 |
+
# Uploading parquets
|
| 76 |
+
# """
|
| 77 |
+
# name, ext = os.path.splitext(file)
|
| 78 |
+
# parquet_file = f"{name}{'.parquet'}"
|
| 79 |
+
# gdf.to_parquet(parquet_file)
|
| 80 |
+
# upload(folder, parquet_file)
|
| 81 |
+
# return
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
def reproject_raster(input_file, crs="EPSG:3310"):
|
| 85 |
+
"""
|
| 86 |
+
Reproject rasters
|
| 87 |
+
"""
|
| 88 |
+
suffix = '_processed'
|
| 89 |
+
name, ext = os.path.splitext(input_file)
|
| 90 |
+
output_file = f"{name}{suffix}{ext}"
|
| 91 |
+
command = [
|
| 92 |
+
"gdalwarp",
|
| 93 |
+
"-t_srs", crs,
|
| 94 |
+
input_file,
|
| 95 |
+
output_file
|
| 96 |
+
]
|
| 97 |
+
try:
|
| 98 |
+
subprocess.run(command, check=True)
|
| 99 |
+
print(f"Reprojection successful!")
|
| 100 |
+
except subprocess.CalledProcessError as e:
|
| 101 |
+
print(f"Error occurred during reprojection: {e}")
|
| 102 |
+
return output_file
|
| 103 |
+
|
| 104 |
+
def make_cog(input_file, crs="EPSG:4326"):
|
| 105 |
+
"""
|
| 106 |
+
Converting TIF to COGs
|
| 107 |
+
"""
|
| 108 |
+
suffix = '_COG'
|
| 109 |
+
name, ext = os.path.splitext(input_file)
|
| 110 |
+
output_file = f"{name}{suffix}{ext}"
|
| 111 |
+
command = [
|
| 112 |
+
"gdalwarp",
|
| 113 |
+
"-t_srs", crs,
|
| 114 |
+
"-of", "COG",
|
| 115 |
+
input_file,
|
| 116 |
+
output_file
|
| 117 |
+
]
|
| 118 |
+
try:
|
| 119 |
+
subprocess.run(command, check=True)
|
| 120 |
+
print(f"Successful!")
|
| 121 |
+
except subprocess.CalledProcessError as e:
|
| 122 |
+
print(f"Error occurred during processing: {e}")
|
| 123 |
+
return output_file
|
| 124 |
+
|
| 125 |
+
def make_vector(input_file, crs="EPSG:4326"):
|
| 126 |
+
"""
|
| 127 |
+
Converting rasters to vector formats in order to convert to h3
|
| 128 |
+
"""
|
| 129 |
+
name, ext = os.path.splitext(input_file)
|
| 130 |
+
output_file = f"{name}.parquet"
|
| 131 |
+
# Open raster
|
| 132 |
+
with rasterio.open(input_file) as src:
|
| 133 |
+
image = src.read(1) # read first band
|
| 134 |
+
mask = image != src.nodata # mask out nodata
|
| 135 |
+
|
| 136 |
+
results = (
|
| 137 |
+
{"geom": shape(geom), "value": value}
|
| 138 |
+
for geom, value in shapes(image, mask=mask, transform=src.transform)
|
| 139 |
+
)
|
| 140 |
+
|
| 141 |
+
gdf = gpd.GeoDataFrame.from_records(results)
|
| 142 |
+
gdf.set_geometry('geom', inplace=True)
|
| 143 |
+
gdf['id'] = np.arange(len(gdf))
|
| 144 |
+
gdf.set_crs(src.crs, inplace=True)
|
| 145 |
+
if gdf.crs != crs:
|
| 146 |
+
gdf.to_crs(crs, inplace=True)
|
| 147 |
+
|
| 148 |
+
gdf.to_parquet(output_file)
|
| 149 |
+
print(gdf)
|
| 150 |
+
return output_file
|
| 151 |
+
|
| 152 |
+
def filter_raster(s3, folder, file, percentile):
|
| 153 |
+
"""
|
| 154 |
+
Helper function to filter rasteres
|
| 155 |
+
"""
|
| 156 |
+
with rasterio.open(file) as src:
|
| 157 |
+
data = src.read(1) # Read the first band
|
| 158 |
+
profile = src.profile
|
| 159 |
+
# mask no data values
|
| 160 |
+
masked_data = np.ma.masked_equal(data, src.nodata)
|
| 161 |
+
|
| 162 |
+
# compute percentile/threshold
|
| 163 |
+
p = np.percentile(masked_data.compressed(),percentile)
|
| 164 |
+
filtered = np.where(data >= p, data, src.nodata)
|
| 165 |
+
name, ext = os.path.splitext(file)
|
| 166 |
+
new_file = f"{name}{'_'}{percentile}{'percentile'}{ext}"
|
| 167 |
+
|
| 168 |
+
profile.update(dtype=rasterio.float64)
|
| 169 |
+
with rasterio.open(new_file, "w", **profile) as dst:
|
| 170 |
+
dst.write(filtered, 1)
|
| 171 |
+
process_raster(s3, folder, file)
|
| 172 |
+
return
|
| 173 |
+
|
| 174 |
+
def process_raster(s3, folder, file, file_name = None):
|
| 175 |
+
"""
|
| 176 |
+
Driver function to process rasters
|
| 177 |
+
"""
|
| 178 |
+
if file_name:
|
| 179 |
+
file = file_name
|
| 180 |
+
output_file = reproject_raster(file)
|
| 181 |
+
upload(s3, folder, output_file)
|
| 182 |
+
output_cog_file = make_cog(output_file)
|
| 183 |
+
upload(s3, folder, output_cog_file)
|
| 184 |
+
output_vector = make_vector(output_file)
|
| 185 |
+
upload(s3, folder, output_vector)
|
| 186 |
+
return
|
| 187 |
+
|
| 188 |
+
def convert_pmtiles(folder, file):
|
| 189 |
+
"""
|
| 190 |
+
Convert to PMTiles with tippecanoe
|
| 191 |
+
"""
|
| 192 |
+
name, ext = os.path.splitext(file)
|
| 193 |
+
if ext != '.geojson':
|
| 194 |
+
con.read_parquet(file).execute().set_crs('epsg:3310').to_crs('epsg:4326').to_file(name+'.geojson')
|
| 195 |
+
to_pmtiles(name+'.geojson', name+'.pmtiles', options = ['--extend-zooms-if-still-dropping'])
|
| 196 |
+
upload(s3, folder, name+'.pmtiles')
|
| 197 |
+
return
|
| 198 |
+
|