Commit
·
8ba5d9d
1
Parent(s):
e493d29
init branch
Browse files- .env.sample +1 -0
- gradio_app.py +42 -31
- langchain_mcp_client.py +30 -37
- memory_store.py +28 -0
.env.sample
CHANGED
|
@@ -11,5 +11,6 @@ GEMINI_MODEL_PROVIDER=
|
|
| 11 |
PANDAS_KEY=
|
| 12 |
PANDAS_EXPORTS_PATH=
|
| 13 |
|
|
|
|
| 14 |
OPENAI_MODEL=
|
| 15 |
OPENAI_API_KEY=
|
|
|
|
| 11 |
PANDAS_KEY=
|
| 12 |
PANDAS_EXPORTS_PATH=
|
| 13 |
|
| 14 |
+
OPENAI_MODEL_PROVIDER=
|
| 15 |
OPENAI_MODEL=
|
| 16 |
OPENAI_API_KEY=
|
gradio_app.py
CHANGED
|
@@ -1,3 +1,4 @@
|
|
|
|
|
| 1 |
import yaml
|
| 2 |
from pathlib import Path
|
| 3 |
import gradio as gr
|
|
@@ -6,6 +7,9 @@ from langchain_mcp_client import lc_mcp_exec
|
|
| 6 |
from dotenv import load_dotenv
|
| 7 |
import os
|
| 8 |
import base64
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
# ======================================= Load DB configs
|
| 11 |
def load_db_configs():
|
|
@@ -28,34 +32,44 @@ def image_to_base64_markdown(image_path, alt_text="Customer Status"):
|
|
| 28 |
|
| 29 |
|
| 30 |
# ====================================== Async-compatible wrapper
|
| 31 |
-
async def run_agent(request, history):
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
output = response
|
| 52 |
-
else:
|
| 53 |
-
output = response
|
| 54 |
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
|
|
|
| 59 |
|
| 60 |
|
| 61 |
# ====================================== Gradio UI with history
|
|
@@ -86,9 +100,8 @@ custom_css = """
|
|
| 86 |
|
| 87 |
with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as demo:
|
| 88 |
with gr.Row(elem_classes="container"):
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
with gr.Column(scale=3):
|
| 93 |
gr.Markdown(
|
| 94 |
"""
|
|
@@ -96,7 +109,6 @@ with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as demo:
|
|
| 96 |
<p style='text-align: center'>Ask questions about your database, analyze and visualize data.</p>
|
| 97 |
"""
|
| 98 |
)
|
| 99 |
-
|
| 100 |
with gr.Row(elem_classes="container"):
|
| 101 |
with gr.Column(scale=3):
|
| 102 |
chat = gr.ChatInterface(
|
|
@@ -128,7 +140,6 @@ with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as demo:
|
|
| 128 |
save_history=True,
|
| 129 |
type="messages"
|
| 130 |
)
|
| 131 |
-
|
| 132 |
with gr.Column(scale=1):
|
| 133 |
with gr.Accordion("Example Questions", open=True):
|
| 134 |
gr.Markdown("""
|
|
|
|
| 1 |
+
from asyncio.log import logger
|
| 2 |
import yaml
|
| 3 |
from pathlib import Path
|
| 4 |
import gradio as gr
|
|
|
|
| 7 |
from dotenv import load_dotenv
|
| 8 |
import os
|
| 9 |
import base64
|
| 10 |
+
from memory_store import MemoryStore
|
| 11 |
+
import logging
|
| 12 |
+
|
| 13 |
|
| 14 |
# ======================================= Load DB configs
|
| 15 |
def load_db_configs():
|
|
|
|
| 32 |
|
| 33 |
|
| 34 |
# ====================================== Async-compatible wrapper
|
| 35 |
+
async def run_agent(request, history=None):
|
| 36 |
+
try:
|
| 37 |
+
logger.info(f"Current request: {request}")
|
| 38 |
+
memory = MemoryStore.get_memory()
|
| 39 |
+
logger.info(f"Current memory messages: {memory.messages}")
|
| 40 |
+
|
| 41 |
+
# Process request using existing memory
|
| 42 |
+
response, messages = await lc_mcp_exec(request)
|
| 43 |
+
|
| 44 |
+
# Handle image processing
|
| 45 |
+
image_path = ""
|
| 46 |
+
load_dotenv()
|
| 47 |
+
PANDAS_EXPORTS_PATH = os.getenv("PANDAS_EXPORTS_PATH", "exports/charts")
|
| 48 |
+
|
| 49 |
+
# Ensure the exports directory exists
|
| 50 |
+
os.makedirs(PANDAS_EXPORTS_PATH, exist_ok=True)
|
| 51 |
+
|
| 52 |
+
# Check for generated charts
|
| 53 |
+
generated_files = [f for f in os.listdir(PANDAS_EXPORTS_PATH)
|
| 54 |
+
if f.startswith("temp_chart_") and f.endswith(".png")]
|
| 55 |
+
|
| 56 |
+
if generated_files:
|
| 57 |
+
image_path = os.path.join(PANDAS_EXPORTS_PATH, generated_files[0])
|
| 58 |
+
try:
|
| 59 |
+
image_markdown = image_to_base64_markdown(image_path)
|
| 60 |
+
output = f"{image_markdown}\n\n{response}"
|
| 61 |
+
os.remove(image_path) # Clean up the image file
|
| 62 |
+
except Exception as e:
|
| 63 |
+
logger.error(f"Error processing image: {e}")
|
| 64 |
+
output = response
|
| 65 |
+
else:
|
| 66 |
output = response
|
|
|
|
|
|
|
| 67 |
|
| 68 |
+
return output
|
| 69 |
+
|
| 70 |
+
except Exception as e:
|
| 71 |
+
logger.error(f"Error in run_agent: {str(e)}", exc_info=True)
|
| 72 |
+
return f"Error: {str(e)}"
|
| 73 |
|
| 74 |
|
| 75 |
# ====================================== Gradio UI with history
|
|
|
|
| 100 |
|
| 101 |
with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as demo:
|
| 102 |
with gr.Row(elem_classes="container"):
|
| 103 |
+
with gr.Column(scale=1):
|
| 104 |
+
gr.Image(value=LOGO_PATH, height=200, show_label=False)
|
|
|
|
| 105 |
with gr.Column(scale=3):
|
| 106 |
gr.Markdown(
|
| 107 |
"""
|
|
|
|
| 109 |
<p style='text-align: center'>Ask questions about your database, analyze and visualize data.</p>
|
| 110 |
"""
|
| 111 |
)
|
|
|
|
| 112 |
with gr.Row(elem_classes="container"):
|
| 113 |
with gr.Column(scale=3):
|
| 114 |
chat = gr.ChatInterface(
|
|
|
|
| 140 |
save_history=True,
|
| 141 |
type="messages"
|
| 142 |
)
|
|
|
|
| 143 |
with gr.Column(scale=1):
|
| 144 |
with gr.Accordion("Example Questions", open=True):
|
| 145 |
gr.Markdown("""
|
langchain_mcp_client.py
CHANGED
|
@@ -11,8 +11,12 @@ from langchain.chat_models import init_chat_model
|
|
| 11 |
import logging
|
| 12 |
from dotenv import load_dotenv
|
| 13 |
from langchain.globals import set_debug
|
|
|
|
|
|
|
| 14 |
|
| 15 |
-
|
|
|
|
|
|
|
| 16 |
|
| 17 |
|
| 18 |
# Set up logging
|
|
@@ -23,85 +27,74 @@ load_dotenv()
|
|
| 23 |
|
| 24 |
async def lc_mcp_exec(request: str, history=None) -> Tuple[str, list]:
|
| 25 |
"""
|
| 26 |
-
Execute the PostgreSQL MCP pipeline with
|
| 27 |
Returns the response and the updated message history.
|
| 28 |
"""
|
| 29 |
try:
|
| 30 |
-
#
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
# Initialize FileChatMessageHistory for persistent storage
|
| 34 |
-
message_history = FileChatMessageHistory(file_path=history_file)
|
| 35 |
|
| 36 |
# Load table summary and server parameters
|
| 37 |
table_summary = load_table_summary(os.environ["TABLE_SUMMARY_PATH"])
|
| 38 |
server_params = get_server_params()
|
| 39 |
|
| 40 |
# Initialize the LLM
|
| 41 |
-
llm = init_chat_model(
|
| 42 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
|
| 44 |
# Initialize the MCP client
|
| 45 |
async with stdio_client(server_params) as (read, write):
|
| 46 |
async with ClientSession(read, write) as session:
|
| 47 |
await session.initialize()
|
| 48 |
-
|
| 49 |
-
# Load tools
|
| 50 |
tools = await load_and_enrich_tools(session)
|
| 51 |
-
|
| 52 |
-
# Create the ReAct agent with tools
|
| 53 |
agent = create_react_agent(llm, tools)
|
| 54 |
|
| 55 |
-
# Add
|
| 56 |
message_history.add_user_message(request)
|
| 57 |
|
| 58 |
-
#
|
| 59 |
system_prompt = await build_prompt(session, tools, table_summary)
|
|
|
|
| 60 |
|
| 61 |
-
#
|
| 62 |
-
system_message = SystemMessage(
|
| 63 |
-
content=system_prompt
|
| 64 |
-
)
|
| 65 |
-
|
| 66 |
-
# Add the system message to the history
|
| 67 |
input_messages = [system_message] + message_history.messages
|
| 68 |
|
| 69 |
-
# Invoke
|
| 70 |
agent_response = await agent.ainvoke(
|
| 71 |
{"messages": input_messages},
|
| 72 |
config={"configurable": {"thread_id": "conversation_123"}}
|
| 73 |
)
|
| 74 |
|
| 75 |
-
#
|
| 76 |
response_content = "No response generated"
|
| 77 |
if "messages" in agent_response and agent_response["messages"]:
|
| 78 |
-
# Identify new messages (those not in input_messages)
|
| 79 |
new_messages = agent_response["messages"][len(input_messages):]
|
| 80 |
-
|
| 81 |
-
# Save
|
| 82 |
for msg in new_messages:
|
| 83 |
-
if isinstance(msg, AIMessage):
|
| 84 |
-
# Save AIMessage, including tool_calls if present
|
| 85 |
-
message_history.add_message(msg)
|
| 86 |
-
elif isinstance(msg, ToolMessage):
|
| 87 |
-
# Save ToolMessage with content and tool_call_id
|
| 88 |
message_history.add_message(msg)
|
| 89 |
else:
|
| 90 |
-
# Log unexpected message types for debugging
|
| 91 |
logger.debug(f"Skipping unexpected message type: {type(msg)}")
|
| 92 |
|
| 93 |
-
# Use the last message’s content as the response
|
| 94 |
response_content = agent_response["messages"][-1].content
|
| 95 |
-
|
| 96 |
else:
|
| 97 |
message_history.add_ai_message(response_content)
|
| 98 |
|
| 99 |
-
# Return the response and the updated history
|
| 100 |
return response_content, message_history.messages
|
| 101 |
-
|
| 102 |
except Exception as e:
|
| 103 |
logger.error(f"Error in execution: {str(e)}", exc_info=True)
|
| 104 |
-
return f"Error: {str(e)}",
|
| 105 |
|
| 106 |
# ---------------- Helper Functions ---------------- #
|
| 107 |
|
|
|
|
| 11 |
import logging
|
| 12 |
from dotenv import load_dotenv
|
| 13 |
from langchain.globals import set_debug
|
| 14 |
+
from langchain.memory import ChatMessageHistory
|
| 15 |
+
from memory_store import MemoryStore
|
| 16 |
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
# set_debug(True)
|
| 20 |
|
| 21 |
|
| 22 |
# Set up logging
|
|
|
|
| 27 |
|
| 28 |
async def lc_mcp_exec(request: str, history=None) -> Tuple[str, list]:
|
| 29 |
"""
|
| 30 |
+
Execute the PostgreSQL MCP pipeline with in-memory chat history.
|
| 31 |
Returns the response and the updated message history.
|
| 32 |
"""
|
| 33 |
try:
|
| 34 |
+
# Get the singleton memory store instance
|
| 35 |
+
message_history = MemoryStore.get_memory()
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
# Load table summary and server parameters
|
| 38 |
table_summary = load_table_summary(os.environ["TABLE_SUMMARY_PATH"])
|
| 39 |
server_params = get_server_params()
|
| 40 |
|
| 41 |
# Initialize the LLM
|
| 42 |
+
# llm = init_chat_model(
|
| 43 |
+
# model_provider=os.getenv("OPENAI_MODEL_PROVIDER"),
|
| 44 |
+
# model=os.getenv("OPENAI_MODEL"),
|
| 45 |
+
# api_key=os.getenv("OPENAI_API_KEY")
|
| 46 |
+
# )
|
| 47 |
+
|
| 48 |
+
llm = init_chat_model(
|
| 49 |
+
model_provider=os.getenv("GEMINI_MODEL_PROVIDER"),
|
| 50 |
+
model=os.getenv("GEMINI_MODEL"),
|
| 51 |
+
api_key=os.getenv("GEMINI_API_KEY")
|
| 52 |
+
)
|
| 53 |
|
| 54 |
# Initialize the MCP client
|
| 55 |
async with stdio_client(server_params) as (read, write):
|
| 56 |
async with ClientSession(read, write) as session:
|
| 57 |
await session.initialize()
|
|
|
|
|
|
|
| 58 |
tools = await load_and_enrich_tools(session)
|
|
|
|
|
|
|
| 59 |
agent = create_react_agent(llm, tools)
|
| 60 |
|
| 61 |
+
# Add new user message to memory
|
| 62 |
message_history.add_user_message(request)
|
| 63 |
|
| 64 |
+
# Get system prompt and create system message
|
| 65 |
system_prompt = await build_prompt(session, tools, table_summary)
|
| 66 |
+
system_message = SystemMessage(content=system_prompt)
|
| 67 |
|
| 68 |
+
# Combine system message with chat history
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
input_messages = [system_message] + message_history.messages
|
| 70 |
|
| 71 |
+
# Invoke agent
|
| 72 |
agent_response = await agent.ainvoke(
|
| 73 |
{"messages": input_messages},
|
| 74 |
config={"configurable": {"thread_id": "conversation_123"}}
|
| 75 |
)
|
| 76 |
|
| 77 |
+
# Process agent response
|
| 78 |
response_content = "No response generated"
|
| 79 |
if "messages" in agent_response and agent_response["messages"]:
|
|
|
|
| 80 |
new_messages = agent_response["messages"][len(input_messages):]
|
| 81 |
+
|
| 82 |
+
# Save new messages to memory
|
| 83 |
for msg in new_messages:
|
| 84 |
+
if isinstance(msg, (AIMessage, ToolMessage)):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
message_history.add_message(msg)
|
| 86 |
else:
|
|
|
|
| 87 |
logger.debug(f"Skipping unexpected message type: {type(msg)}")
|
| 88 |
|
|
|
|
| 89 |
response_content = agent_response["messages"][-1].content
|
|
|
|
| 90 |
else:
|
| 91 |
message_history.add_ai_message(response_content)
|
| 92 |
|
|
|
|
| 93 |
return response_content, message_history.messages
|
| 94 |
+
|
| 95 |
except Exception as e:
|
| 96 |
logger.error(f"Error in execution: {str(e)}", exc_info=True)
|
| 97 |
+
return f"Error: {str(e)}", []
|
| 98 |
|
| 99 |
# ---------------- Helper Functions ---------------- #
|
| 100 |
|
memory_store.py
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from langchain.memory import ChatMessageHistory
|
| 2 |
+
from typing import Optional
|
| 3 |
+
import logging
|
| 4 |
+
|
| 5 |
+
logger = logging.getLogger(__name__)
|
| 6 |
+
|
| 7 |
+
class MemoryStore:
|
| 8 |
+
_instance: Optional['MemoryStore'] = None
|
| 9 |
+
_memory: Optional[ChatMessageHistory] = None
|
| 10 |
+
|
| 11 |
+
def __new__(cls):
|
| 12 |
+
if cls._instance is None:
|
| 13 |
+
cls._instance = super(MemoryStore, cls).__new__(cls)
|
| 14 |
+
cls._memory = ChatMessageHistory()
|
| 15 |
+
logger.info("New MemoryStore instance created")
|
| 16 |
+
return cls._instance
|
| 17 |
+
|
| 18 |
+
@classmethod
|
| 19 |
+
def get_memory(cls) -> ChatMessageHistory:
|
| 20 |
+
if cls._instance is None:
|
| 21 |
+
cls._instance = cls()
|
| 22 |
+
return cls._memory
|
| 23 |
+
|
| 24 |
+
@classmethod
|
| 25 |
+
def clear_memory(cls):
|
| 26 |
+
if cls._memory is not None:
|
| 27 |
+
cls._memory = ChatMessageHistory()
|
| 28 |
+
logger.info("Memory cleared")
|