File size: 4,295 Bytes
2525839
7cf4b81
2525839
 
 
 
 
1bbae28
2525839
 
 
1bbae28
2525839
 
 
 
 
af4203c
2525839
 
80d42e4
af4203c
 
 
 
 
 
 
 
a7fdf2a
af4203c
 
 
 
2525839
 
 
 
af4203c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
139be99
2525839
af4203c
 
 
 
 
 
 
 
2525839
af4203c
2525839
 
 
 
 
cda033e
2525839
 
af4203c
 
2525839
af4203c
 
 
 
 
 
 
 
2525839
af4203c
 
 
cda033e
af4203c
 
cda033e
af4203c
 
 
 
 
 
 
 
a7fdf2a
af4203c
 
 
 
 
 
 
 
 
 
2525839
af4203c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2525839
af4203c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import gradio as gr
import random
import os
import spaces
import torch
import time
import json
import numpy as np
from diffusers import BriaFiboPipeline
from diffusers.modular_pipelines import ModularPipeline

MAX_SEED = np.iinfo(np.int32).max
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"

torch.set_grad_enabled(False)
vlm_pipe = ModularPipeline.from_pretrained("briaai/FIBO-VLM-prompt-to-JSON", trust_remote_code=True).to(device)
pipe = BriaFiboPipeline.from_pretrained("briaai/FIBO", trust_remote_code=True, dtype=dtype).to(device)


@spaces.GPU(duration=300)
def infer(
    prompt,
    prompt_refine,
    prompt_in_json,
    negative_prompt="",
    seed=42,
    randomize_seed=False,
    width=1024,
    height=768,
    guidance_scale=5,
    num_inference_steps=50,
    mode="generate",
):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    with torch.inference_mode():
        if negative_prompt:
            neg_output = vlm_pipe(prompt=negative_prompt)
            neg_json_prompt = neg_output.values["json_prompt"]
        else:
            neg_json_prompt = ""
            
        if mode == "refine":
            json_prompt_str = (
                json.dumps(prompt_in_json)
                if isinstance(prompt_in_json, (dict, list))
                else str(prompt_in_json)
            )
            output = vlm_pipe(json_prompt=json_prompt_str, prompt=prompt_refine)
        else:
            output = vlm_pipe(prompt=prompt)
        json_prompt = output.values["json_prompt"]

        image = pipe(
            prompt=json_prompt,
            num_inference_steps=num_inference_steps,
            negative_prompt=neg_json_prompt,
            width=width,
            height=height,
            guidance_scale=guidance_scale,
        ).images[0]

    return image, seed, json_prompt, neg_json_prompt


css = """
#col-container{
    margin: 0 auto;
    max-width: 768px;
}
"""

with gr.Blocks(css=css, theme=gr.themes.Soft(primary_hue="violet")) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown("## FIBO")

        with gr.Row():
            with gr.Tab("generate") as tab_generate:
                with gr.Row():
                    prompt_generate = gr.Textbox(label="Prompt")

            with gr.Tab("refine") as tab_refine:
                with gr.Row():
                    prompt_refine = gr.Textbox(label="Prompt")

        submit_btn = gr.Button("Generate")
        result = gr.Image(label="output")
        with gr.Accordion("Structured Prompt", open=False):
            prompt_in_json = gr.JSON(label="json structured prompt")
        with gr.Accordion("Advanced Settings", open=False):
            with gr.Row():
                seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
                randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
            with gr.Row():
                guidance_scale = gr.Slider(label="guidance scale", minimum=1.0, maximum=10.0, step=0.1, value=5.0)
                num_inference_steps = gr.Slider(
                    label="number of inference steps", minimum=1, maximum=60, step=1, value=50
                )
                height = gr.Slider(label="Height", minimum=768, maximum=1248, step=32, value=768)
                width = gr.Slider(label="Width", minimum=832, maximum=1344, step=64, value=1024)
            with gr.Row():
                negative_prompt = gr.Textbox(label="negative prompt")
                negative_prompt_json = gr.JSON(label="json negative prompt")

        # Track active tab
        current_mode = gr.State("generate")

        tab_generate.select(lambda: "generate", outputs=current_mode)
        tab_refine.select(lambda: "refine", outputs=current_mode)

        submit_btn.click(
            fn=infer,
            inputs=[
                prompt_generate,
                prompt_refine,
                prompt_in_json,
                negative_prompt,
                seed,
                randomize_seed,
                width,
                height,
                guidance_scale,
                num_inference_steps,
                current_mode,
            ],
            outputs=[result, seed, prompt_in_json, negative_prompt_json],
        )

demo.queue().launch()