Spaces:
Paused
Paused
| import torch | |
| from typing import Optional | |
| def init_weights(m, mean=0.0, std=0.01): | |
| """ | |
| Initialize the weights of a module. | |
| Args: | |
| m: The module to initialize. | |
| mean: The mean of the normal distribution. | |
| std: The standard deviation of the normal distribution. | |
| """ | |
| classname = m.__class__.__name__ | |
| if classname.find("Conv") != -1: | |
| m.weight.data.normal_(mean, std) | |
| def get_padding(kernel_size, dilation=1): | |
| """ | |
| Calculate the padding needed for a convolution. | |
| Args: | |
| kernel_size: The size of the kernel. | |
| dilation: The dilation of the convolution. | |
| """ | |
| return int((kernel_size * dilation - dilation) / 2) | |
| def convert_pad_shape(pad_shape): | |
| """ | |
| Convert the pad shape to a list of integers. | |
| Args: | |
| pad_shape: The pad shape.. | |
| """ | |
| l = pad_shape[::-1] | |
| pad_shape = [item for sublist in l for item in sublist] | |
| return pad_shape | |
| def slice_segments( | |
| x: torch.Tensor, ids_str: torch.Tensor, segment_size: int = 4, dim: int = 2 | |
| ): | |
| """ | |
| Slice segments from a tensor, handling tensors with different numbers of dimensions. | |
| Args: | |
| x (torch.Tensor): The tensor to slice. | |
| ids_str (torch.Tensor): The starting indices of the segments. | |
| segment_size (int, optional): The size of each segment. Defaults to 4. | |
| dim (int, optional): The dimension to slice across (2D or 3D tensors). Defaults to 2. | |
| """ | |
| if dim == 2: | |
| ret = torch.zeros_like(x[:, :segment_size]) | |
| elif dim == 3: | |
| ret = torch.zeros_like(x[:, :, :segment_size]) | |
| for i in range(x.size(0)): | |
| idx_str = ids_str[i].item() | |
| idx_end = idx_str + segment_size | |
| if dim == 2: | |
| ret[i] = x[i, idx_str:idx_end] | |
| else: | |
| ret[i] = x[i, :, idx_str:idx_end] | |
| return ret | |
| def rand_slice_segments(x, x_lengths=None, segment_size=4): | |
| """ | |
| Randomly slice segments from a tensor. | |
| Args: | |
| x: The tensor to slice. | |
| x_lengths: The lengths of the sequences. | |
| segment_size: The size of each segment. | |
| """ | |
| b, d, t = x.size() | |
| if x_lengths is None: | |
| x_lengths = t | |
| ids_str_max = x_lengths - segment_size + 1 | |
| ids_str = (torch.rand([b], device=x.device) * ids_str_max).to(dtype=torch.long) | |
| ret = slice_segments(x, ids_str, segment_size, dim=3) | |
| return ret, ids_str | |
| def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels): | |
| """ | |
| Fused add tanh sigmoid multiply operation. | |
| Args: | |
| input_a: The first input tensor. | |
| input_b: The second input tensor. | |
| n_channels: The number of channels. | |
| """ | |
| n_channels_int = n_channels[0] | |
| in_act = input_a + input_b | |
| t_act = torch.tanh(in_act[:, :n_channels_int, :]) | |
| s_act = torch.sigmoid(in_act[:, n_channels_int:, :]) | |
| acts = t_act * s_act | |
| return acts | |
| def sequence_mask(length: torch.Tensor, max_length: Optional[int] = None): | |
| """ | |
| Generate a sequence mask. | |
| Args: | |
| length: The lengths of the sequences. | |
| max_length: The maximum length of the sequences. | |
| """ | |
| if max_length is None: | |
| max_length = length.max() | |
| x = torch.arange(max_length, dtype=length.dtype, device=length.device) | |
| return x.unsqueeze(0) < length.unsqueeze(1) | |