Spaces:
Paused
Paused
| import torch | |
| from itertools import chain | |
| from typing import Optional, Tuple | |
| from torch.nn.utils import remove_weight_norm | |
| from torch.nn.utils.parametrizations import weight_norm | |
| from rvc.lib.algorithm.modules import WaveNet | |
| from rvc.lib.algorithm.commons import get_padding, init_weights | |
| LRELU_SLOPE = 0.1 | |
| def create_conv1d_layer(channels, kernel_size, dilation): | |
| return weight_norm( | |
| torch.nn.Conv1d( | |
| channels, | |
| channels, | |
| kernel_size, | |
| 1, | |
| dilation=dilation, | |
| padding=get_padding(kernel_size, dilation), | |
| ) | |
| ) | |
| def apply_mask(tensor: torch.Tensor, mask: Optional[torch.Tensor]): | |
| return tensor * mask if mask else tensor | |
| def apply_mask_(tensor: torch.Tensor, mask: Optional[torch.Tensor]): | |
| return tensor.mul_(mask) if mask else tensor | |
| class ResBlock(torch.nn.Module): | |
| """ | |
| A residual block module that applies a series of 1D convolutional layers with residual connections. | |
| """ | |
| def __init__( | |
| self, channels: int, kernel_size: int = 3, dilations: Tuple[int] = (1, 3, 5) | |
| ): | |
| """ | |
| Initializes the ResBlock. | |
| Args: | |
| channels (int): Number of input and output channels for the convolution layers. | |
| kernel_size (int): Size of the convolution kernel. Defaults to 3. | |
| dilations (Tuple[int]): Tuple of dilation rates for the convolution layers in the first set. | |
| """ | |
| super().__init__() | |
| # Create convolutional layers with specified dilations and initialize weights | |
| self.convs1 = self._create_convs(channels, kernel_size, dilations) | |
| self.convs2 = self._create_convs(channels, kernel_size, [1] * len(dilations)) | |
| def _create_convs(channels: int, kernel_size: int, dilations: Tuple[int]): | |
| """ | |
| Creates a list of 1D convolutional layers with specified dilations. | |
| Args: | |
| channels (int): Number of input and output channels for the convolution layers. | |
| kernel_size (int): Size of the convolution kernel. | |
| dilations (Tuple[int]): Tuple of dilation rates for each convolution layer. | |
| """ | |
| layers = torch.nn.ModuleList( | |
| [create_conv1d_layer(channels, kernel_size, d) for d in dilations] | |
| ) | |
| layers.apply(init_weights) | |
| return layers | |
| def forward(self, x: torch.Tensor, x_mask: torch.Tensor = None): | |
| for conv1, conv2 in zip(self.convs1, self.convs2): | |
| x_residual = x | |
| # new tensor | |
| x = torch.nn.functional.leaky_relu(x, LRELU_SLOPE) | |
| # in-place call | |
| x = apply_mask_(x, x_mask) | |
| # in-place call | |
| x = torch.nn.functional.leaky_relu_(conv1(x), LRELU_SLOPE) | |
| # in-place call | |
| x = apply_mask_(x, x_mask) | |
| x = conv2(x) | |
| # in-place call | |
| x += x_residual | |
| # in-place call | |
| return apply_mask_(x, x_mask) | |
| def remove_weight_norm(self): | |
| for conv in chain(self.convs1, self.convs2): | |
| remove_weight_norm(conv) | |
| class Flip(torch.nn.Module): | |
| """ | |
| Flip module for flow-based models. | |
| This module flips the input along the time dimension. | |
| """ | |
| def forward(self, x, *args, reverse=False, **kwargs): | |
| x = torch.flip(x, [1]) | |
| if not reverse: | |
| logdet = torch.zeros(x.size(0), dtype=x.dtype, device=x.device) | |
| return x, logdet | |
| else: | |
| return x | |
| class ResidualCouplingBlock(torch.nn.Module): | |
| """ | |
| Residual Coupling Block for normalizing flow. | |
| Args: | |
| channels (int): Number of channels in the input. | |
| hidden_channels (int): Number of hidden channels in the coupling layer. | |
| kernel_size (int): Kernel size of the convolutional layers. | |
| dilation_rate (int): Dilation rate of the convolutional layers. | |
| n_layers (int): Number of layers in the coupling layer. | |
| n_flows (int, optional): Number of coupling layers in the block. Defaults to 4. | |
| gin_channels (int, optional): Number of channels for the global conditioning input. Defaults to 0. | |
| """ | |
| def __init__( | |
| self, | |
| channels: int, | |
| hidden_channels: int, | |
| kernel_size: int, | |
| dilation_rate: int, | |
| n_layers: int, | |
| n_flows: int = 4, | |
| gin_channels: int = 0, | |
| ): | |
| super(ResidualCouplingBlock, self).__init__() | |
| self.channels = channels | |
| self.hidden_channels = hidden_channels | |
| self.kernel_size = kernel_size | |
| self.dilation_rate = dilation_rate | |
| self.n_layers = n_layers | |
| self.n_flows = n_flows | |
| self.gin_channels = gin_channels | |
| self.flows = torch.nn.ModuleList() | |
| for _ in range(n_flows): | |
| self.flows.append( | |
| ResidualCouplingLayer( | |
| channels, | |
| hidden_channels, | |
| kernel_size, | |
| dilation_rate, | |
| n_layers, | |
| gin_channels=gin_channels, | |
| mean_only=True, | |
| ) | |
| ) | |
| self.flows.append(Flip()) | |
| def forward( | |
| self, | |
| x: torch.Tensor, | |
| x_mask: torch.Tensor, | |
| g: Optional[torch.Tensor] = None, | |
| reverse: bool = False, | |
| ): | |
| if not reverse: | |
| for flow in self.flows: | |
| x, _ = flow(x, x_mask, g=g, reverse=reverse) | |
| else: | |
| for flow in reversed(self.flows): | |
| x = flow.forward(x, x_mask, g=g, reverse=reverse) | |
| return x | |
| def remove_weight_norm(self): | |
| for i in range(self.n_flows): | |
| self.flows[i * 2].remove_weight_norm() | |
| def __prepare_scriptable__(self): | |
| for i in range(self.n_flows): | |
| for hook in self.flows[i * 2]._forward_pre_hooks.values(): | |
| if ( | |
| hook.__module__ == "torch.nn.utils.parametrizations.weight_norm" | |
| and hook.__class__.__name__ == "WeightNorm" | |
| ): | |
| torch.nn.utils.remove_weight_norm(self.flows[i * 2]) | |
| return self | |
| class ResidualCouplingLayer(torch.nn.Module): | |
| """ | |
| Residual coupling layer for flow-based models. | |
| Args: | |
| channels (int): Number of channels. | |
| hidden_channels (int): Number of hidden channels. | |
| kernel_size (int): Size of the convolutional kernel. | |
| dilation_rate (int): Dilation rate of the convolution. | |
| n_layers (int): Number of convolutional layers. | |
| p_dropout (float, optional): Dropout probability. Defaults to 0. | |
| gin_channels (int, optional): Number of conditioning channels. Defaults to 0. | |
| mean_only (bool, optional): Whether to use mean-only coupling. Defaults to False. | |
| """ | |
| def __init__( | |
| self, | |
| channels: int, | |
| hidden_channels: int, | |
| kernel_size: int, | |
| dilation_rate: int, | |
| n_layers: int, | |
| p_dropout: float = 0, | |
| gin_channels: int = 0, | |
| mean_only: bool = False, | |
| ): | |
| assert channels % 2 == 0, "channels should be divisible by 2" | |
| super().__init__() | |
| self.channels = channels | |
| self.hidden_channels = hidden_channels | |
| self.kernel_size = kernel_size | |
| self.dilation_rate = dilation_rate | |
| self.n_layers = n_layers | |
| self.half_channels = channels // 2 | |
| self.mean_only = mean_only | |
| self.pre = torch.nn.Conv1d(self.half_channels, hidden_channels, 1) | |
| self.enc = WaveNet( | |
| hidden_channels, | |
| kernel_size, | |
| dilation_rate, | |
| n_layers, | |
| p_dropout=p_dropout, | |
| gin_channels=gin_channels, | |
| ) | |
| self.post = torch.nn.Conv1d( | |
| hidden_channels, self.half_channels * (2 - mean_only), 1 | |
| ) | |
| self.post.weight.data.zero_() | |
| self.post.bias.data.zero_() | |
| def forward( | |
| self, | |
| x: torch.Tensor, | |
| x_mask: torch.Tensor, | |
| g: Optional[torch.Tensor] = None, | |
| reverse: bool = False, | |
| ): | |
| x0, x1 = torch.split(x, [self.half_channels] * 2, 1) | |
| h = self.pre(x0) * x_mask | |
| h = self.enc(h, x_mask, g=g) | |
| stats = self.post(h) * x_mask | |
| if not self.mean_only: | |
| m, logs = torch.split(stats, [self.half_channels] * 2, 1) | |
| else: | |
| m = stats | |
| logs = torch.zeros_like(m) | |
| if not reverse: | |
| x1 = m + x1 * torch.exp(logs) * x_mask | |
| x = torch.cat([x0, x1], 1) | |
| logdet = torch.sum(logs, [1, 2]) | |
| return x, logdet | |
| else: | |
| x1 = (x1 - m) * torch.exp(-logs) * x_mask | |
| x = torch.cat([x0, x1], 1) | |
| return x | |
| def remove_weight_norm(self): | |
| self.enc.remove_weight_norm() | |