Spaces:
Running
on
Zero
Running
on
Zero
zixinz
commited on
Commit
·
a01e858
1
Parent(s):
134053b
chore: ignore pyc and __pycache__
Browse files
app.py
CHANGED
|
@@ -4,6 +4,7 @@ import sys, pathlib
|
|
| 4 |
BASE_DIR = pathlib.Path(__file__).resolve().parent
|
| 5 |
LOCAL_DIFFUSERS_SRC = BASE_DIR / "code_edit" / "diffusers" / "src"
|
| 6 |
|
|
|
|
| 7 |
if (LOCAL_DIFFUSERS_SRC / "diffusers").exists():
|
| 8 |
sys.path.insert(0, str(LOCAL_DIFFUSERS_SRC))
|
| 9 |
else:
|
|
@@ -20,11 +21,9 @@ from diffusers.pipelines.flux.pipeline_flux_fill_unmasked_image_condition_versio
|
|
| 20 |
# ===========================================================================
|
| 21 |
|
| 22 |
import os
|
| 23 |
-
import sys
|
| 24 |
-
import pathlib
|
| 25 |
import subprocess
|
| 26 |
import random
|
| 27 |
-
from typing import Optional, Tuple
|
| 28 |
|
| 29 |
import torch
|
| 30 |
from PIL import Image, ImageOps
|
|
@@ -44,19 +43,19 @@ EXPECTED_ASSETS = [
|
|
| 44 |
BASE_DIR / "code_edit" / "stage2" / "checkpoint-20000" / "pytorch_lora_weights.safetensors",
|
| 45 |
]
|
| 46 |
|
| 47 |
-
#
|
| 48 |
if str(CODE_DEPTH) not in sys.path:
|
| 49 |
sys.path.insert(0, str(CODE_DEPTH))
|
| 50 |
from depth_infer import DepthModel # noqa: E402
|
| 51 |
|
| 52 |
-
#
|
| 53 |
if str(CODE_EDIT / "diffusers") not in sys.path:
|
| 54 |
sys.path.insert(0, str(CODE_EDIT / "diffusers"))
|
| 55 |
from diffusers.pipelines.flux.pipeline_flux_fill_unmasked_image_condition_version import ( # type: ignore # noqa: E402
|
| 56 |
FluxFillPipeline_token12_depth_only as FluxFillPipeline,
|
| 57 |
)
|
| 58 |
|
| 59 |
-
# ----------------
|
| 60 |
def _have_all_assets() -> bool:
|
| 61 |
return all(p.is_file() for p in EXPECTED_ASSETS)
|
| 62 |
|
|
@@ -66,6 +65,10 @@ def _ensure_executable(p: pathlib.Path):
|
|
| 66 |
os.chmod(p, os.stat(p).st_mode | 0o111)
|
| 67 |
|
| 68 |
def ensure_assets_if_missing():
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
if os.getenv("SKIP_ASSET_DOWNLOAD") == "1":
|
| 70 |
print("↪️ SKIP_ASSET_DOWNLOAD=1 -> skip asset download check")
|
| 71 |
return
|
|
@@ -91,7 +94,7 @@ except Exception as e:
|
|
| 91 |
print(f"⚠️ Asset prepare failed: {e}")
|
| 92 |
|
| 93 |
# ---------------- Global singletons ----------------
|
| 94 |
-
_MODELS:
|
| 95 |
_PIPE: Optional[FluxFillPipeline] = None
|
| 96 |
# ==== STAGE-2 ONLY ADDED: singleton ====
|
| 97 |
_PIPE_STAGE2: Optional[FluxFillPipelineStage2] = None
|
|
@@ -103,6 +106,9 @@ def get_model(encoder: str) -> DepthModel:
|
|
| 103 |
return _MODELS[encoder]
|
| 104 |
|
| 105 |
def get_pipe() -> FluxFillPipeline:
|
|
|
|
|
|
|
|
|
|
| 106 |
global _PIPE
|
| 107 |
if _PIPE is not None:
|
| 108 |
return _PIPE
|
|
@@ -124,11 +130,8 @@ def get_pipe() -> FluxFillPipeline:
|
|
| 124 |
print(f"[pipe] loading FLUX.1-Fill-dev (dtype={dtype}, device={device}, local={use_local})")
|
| 125 |
try:
|
| 126 |
if use_local:
|
| 127 |
-
pipe = FluxFillPipeline.from_pretrained(
|
| 128 |
-
local_flux, torch_dtype=dtype
|
| 129 |
-
).to(device)
|
| 130 |
else:
|
| 131 |
-
# Fetch online (requires gated access + token)
|
| 132 |
pipe = FluxFillPipeline.from_pretrained(
|
| 133 |
"black-forest-labs/FLUX.1-Fill-dev",
|
| 134 |
torch_dtype=dtype,
|
|
@@ -137,31 +140,28 @@ def get_pipe() -> FluxFillPipeline:
|
|
| 137 |
except Exception as e:
|
| 138 |
raise RuntimeError(
|
| 139 |
"Failed to load FLUX.1-Fill-dev. "
|
| 140 |
-
"
|
| 141 |
-
"or pre-download to a local cache directory."
|
| 142 |
) from e
|
| 143 |
|
| 144 |
-
# -------- LoRA (
|
| 145 |
lora_dir = CODE_EDIT / "stage1" / "checkpoint-4800"
|
| 146 |
-
lora_file = "pytorch_lora_weights.safetensors"
|
| 147 |
adapter_name = "stage1"
|
| 148 |
|
| 149 |
if lora_dir.exists():
|
| 150 |
try:
|
| 151 |
-
import peft # assert backend
|
| 152 |
print(f"[pipe] loading LoRA from: {lora_dir}/{lora_file}")
|
| 153 |
pipe.load_lora_weights(
|
| 154 |
str(lora_dir),
|
| 155 |
-
weight_name=lora_file,
|
| 156 |
-
adapter_name=adapter_name
|
| 157 |
)
|
| 158 |
-
# Newer diffusers prefer set_adapters
|
| 159 |
try:
|
| 160 |
pipe.set_adapters(adapter_name, scale=1.0)
|
| 161 |
-
print(f"[pipe] set_adapters('{adapter_name}',
|
| 162 |
except Exception as e_set:
|
| 163 |
print(f"[pipe] set_adapters not available ({e_set}); trying fuse_lora()")
|
| 164 |
-
# Older / pipelines without set_adapters: fuse LoRA
|
| 165 |
try:
|
| 166 |
pipe.fuse_lora(lora_scale=1.0)
|
| 167 |
print("[pipe] fuse_lora(lora_scale=1.0) done")
|
|
@@ -169,7 +169,7 @@ def get_pipe() -> FluxFillPipeline:
|
|
| 169 |
print(f"[pipe] fuse_lora failed: {e_fuse}")
|
| 170 |
print("[pipe] LoRA ready ✅")
|
| 171 |
except ImportError:
|
| 172 |
-
print("[pipe] peft not installed; LoRA
|
| 173 |
except Exception as e:
|
| 174 |
print(f"[pipe] load_lora_weights failed (continue without): {e}")
|
| 175 |
else:
|
|
@@ -181,7 +181,7 @@ def get_pipe() -> FluxFillPipeline:
|
|
| 181 |
# ==== STAGE-2 ONLY ADDED: Stage-2 loader (no change to Stage-1 logic) ====
|
| 182 |
def get_pipe_stage2() -> FluxFillPipelineStage2:
|
| 183 |
"""
|
| 184 |
-
Load Stage-2 FluxFillPipeline_token12_depth and mount
|
| 185 |
"""
|
| 186 |
global _PIPE_STAGE2
|
| 187 |
if _PIPE_STAGE2 is not None:
|
|
@@ -230,16 +230,13 @@ def get_pipe_stage2() -> FluxFillPipelineStage2:
|
|
| 230 |
raise RuntimeError(f"Stage-2 LoRA dir not found: {lora_dir2}")
|
| 231 |
if weight_name is None:
|
| 232 |
raise RuntimeError(
|
| 233 |
-
f"Stage-2 LoRA weight not found under {lora_dir2}. "
|
| 234 |
-
f"Tried: {candidate_names}"
|
| 235 |
)
|
| 236 |
|
| 237 |
try:
|
| 238 |
import peft # noqa: F401
|
| 239 |
except Exception as e:
|
| 240 |
-
raise RuntimeError(
|
| 241 |
-
"peft is not installed (requires peft>=0.11 to load LoRA)."
|
| 242 |
-
) from e
|
| 243 |
|
| 244 |
try:
|
| 245 |
print(f"[stage2] loading LoRA: {lora_dir2}/{weight_name}")
|
|
@@ -272,15 +269,15 @@ def to_grayscale_mask(im: Image.Image) -> Image.Image:
|
|
| 272 |
Output: white = region to remove/fill, black = keep.
|
| 273 |
"""
|
| 274 |
if im.mode == "RGBA":
|
| 275 |
-
mask = im.split()[-1]
|
| 276 |
else:
|
| 277 |
mask = im.convert("L")
|
| 278 |
-
#
|
| 279 |
mask = mask.point(lambda p: 255 if p > 16 else 0)
|
| 280 |
-
return mask #
|
| 281 |
|
| 282 |
def dilate_mask(mask_l: Image.Image, px: int) -> Image.Image:
|
| 283 |
-
"""Dilate white region by ~px pixels."""
|
| 284 |
if px <= 0:
|
| 285 |
return mask_l
|
| 286 |
arr = np.array(mask_l, dtype=np.uint8)
|
|
@@ -291,15 +288,12 @@ def dilate_mask(mask_l: Image.Image, px: int) -> Image.Image:
|
|
| 291 |
|
| 292 |
def _mask_from_red(img: Image.Image, out_size: Tuple[int, int]) -> Image.Image:
|
| 293 |
"""
|
| 294 |
-
Extract "pure red strokes" as a binary mask (white=brush, black=others) from
|
| 295 |
-
Thresholds are
|
| 296 |
"""
|
| 297 |
arr = np.array(img.convert("RGBA"))
|
| 298 |
r, g, b, a = arr[..., 0], arr[..., 1], arr[..., 2], arr[..., 3]
|
| 299 |
-
|
| 300 |
-
# condition: high red, low green/blue, and alpha>0
|
| 301 |
red_hit = (r >= 200) & (g <= 40) & (b <= 40) & (a > 0)
|
| 302 |
-
|
| 303 |
mask = (red_hit.astype(np.uint8) * 255)
|
| 304 |
m = Image.fromarray(mask, mode="L").resize(out_size, Image.NEAREST)
|
| 305 |
return m
|
|
@@ -311,9 +305,9 @@ def pick_mask(
|
|
| 311 |
dilate_px: int = 0,
|
| 312 |
) -> Optional[Image.Image]:
|
| 313 |
"""
|
| 314 |
-
|
| 315 |
-
1) If
|
| 316 |
-
2)
|
| 317 |
- Try sketch_data['mask'] first (some versions provide it)
|
| 318 |
- Else merge red strokes from sketch_data['layers'][*]['image']
|
| 319 |
- If still none, try sketch_data['composite'] for red strokes
|
|
@@ -342,8 +336,7 @@ def pick_mask(
|
|
| 342 |
li = lyr.get("image") or lyr.get("mask")
|
| 343 |
if isinstance(li, Image.Image):
|
| 344 |
m_layer = _mask_from_red(li, base_image.size)
|
| 345 |
-
|
| 346 |
-
acc = ImageOps.lighter(acc, m_layer)
|
| 347 |
if acc.getbbox() is not None:
|
| 348 |
return dilate_mask(acc, dilate_px) if dilate_px > 0 else acc
|
| 349 |
|
|
@@ -354,10 +347,9 @@ def pick_mask(
|
|
| 354 |
if m_comp.getbbox() is not None:
|
| 355 |
return dilate_mask(m_comp, dilate_px) if dilate_px > 0 else m_comp
|
| 356 |
|
| 357 |
-
# 3)
|
| 358 |
return None
|
| 359 |
|
| 360 |
-
|
| 361 |
def _round_mult64(x: float, mode: str = "nearest") -> int:
|
| 362 |
"""
|
| 363 |
Align x to a multiple of 64:
|
|
@@ -375,17 +367,14 @@ def _round_mult64(x: float, mode: str = "nearest") -> int:
|
|
| 375 |
def prepare_size_for_flux(img: Image.Image, target_max: int = 1024) -> tuple[int, int]:
|
| 376 |
"""
|
| 377 |
Steps:
|
| 378 |
-
1)
|
| 379 |
2) Fix the long side to target_max (default 1024)
|
| 380 |
-
3) Scale the short side proportionally and align to a multiple of 64 (
|
| 381 |
"""
|
| 382 |
w, h = img.size
|
| 383 |
-
|
| 384 |
-
# 1) round each up to multiple of 64
|
| 385 |
w1 = max(64, _round_mult64(w, mode="ceil"))
|
| 386 |
h1 = max(64, _round_mult64(h, mode="ceil"))
|
| 387 |
|
| 388 |
-
# 2) fix long side to target_max; scale short side
|
| 389 |
if w1 >= h1:
|
| 390 |
out_w = target_max
|
| 391 |
scaled_h = h1 * (target_max / w1)
|
|
@@ -403,7 +392,6 @@ def preview_depth(image: Optional[Image.Image], encoder: str, max_res: int, inpu
|
|
| 403 |
if image is None:
|
| 404 |
return None
|
| 405 |
dm = get_model(encoder)
|
| 406 |
-
# colored visualization (RGB), consistent with your previous colormap style
|
| 407 |
d_rgb = dm.infer(image=image, max_res=max_res, input_size=input_size, fp32=fp32, grayscale=False)
|
| 408 |
return d_rgb
|
| 409 |
|
|
@@ -411,10 +399,9 @@ def prepare_canvas(image, depth_img, source):
|
|
| 411 |
base = depth_img if source == "depth" else image
|
| 412 |
if base is None:
|
| 413 |
raise gr.Error('Please upload an image (and wait for the depth preview), then click "Prepare canvas".')
|
| 414 |
-
# Use a generic gr.update to set ImageEditor value
|
| 415 |
return gr.update(value=base)
|
| 416 |
|
| 417 |
-
# ----------------
|
| 418 |
@spaces.GPU
|
| 419 |
def run_depth_and_fill(
|
| 420 |
image: Image.Image,
|
|
@@ -439,14 +426,14 @@ def run_depth_and_fill(
|
|
| 439 |
depth_rgb: Image.Image = depth_model.infer(
|
| 440 |
image=image, max_res=max_res, input_size=input_size, fp32=fp32, grayscale=False
|
| 441 |
).convert("RGB")
|
| 442 |
-
|
| 443 |
print(f"[DEBUG] Depth RGB: mode={depth_rgb.mode}, size={depth_rgb.size}")
|
| 444 |
|
| 445 |
# 2) extract mask (uploaded > drawn)
|
| 446 |
mask_l = pick_mask(mask_upload, sketch, image, dilate_px=mask_dilate_px)
|
| 447 |
if (mask_l is None) or (mask_l.getbbox() is None):
|
| 448 |
-
raise gr.Error("No valid mask detected: please draw
|
| 449 |
-
|
| 450 |
print(f"[DEBUG] Mask: mode={mask_l.mode}, size={mask_l.size}, bbox={mask_l.getbbox()}")
|
| 451 |
|
| 452 |
# 3) decide output size
|
|
@@ -454,14 +441,17 @@ def run_depth_and_fill(
|
|
| 454 |
orig_w, orig_h = image.size
|
| 455 |
print(f"[DEBUG] FLUX size: {width}x{height}, original: {orig_w}x{orig_h}")
|
| 456 |
|
| 457 |
-
# 4) run FLUX pipeline
|
| 458 |
-
# Key fix: pass depth_rgb as `image` instead of the original image
|
| 459 |
pipe = get_pipe()
|
| 460 |
-
generator =
|
|
|
|
|
|
|
|
|
|
|
|
|
| 461 |
|
| 462 |
result = pipe(
|
| 463 |
prompt=prompt,
|
| 464 |
-
image=depth_rgb, #
|
| 465 |
mask_image=mask_l,
|
| 466 |
width=width,
|
| 467 |
height=height,
|
|
@@ -469,11 +459,11 @@ def run_depth_and_fill(
|
|
| 469 |
num_inference_steps=int(steps),
|
| 470 |
max_sequence_length=512,
|
| 471 |
generator=generator,
|
| 472 |
-
depth=depth_rgb, #
|
| 473 |
).images[0]
|
| 474 |
|
| 475 |
final_result = result.resize((orig_w, orig_h), Image.BICUBIC)
|
| 476 |
-
|
| 477 |
# return result and mask preview
|
| 478 |
mask_preview = mask_l.resize((orig_w, orig_h), Image.NEAREST).convert("RGB")
|
| 479 |
return final_result, mask_preview
|
|
@@ -482,21 +472,20 @@ def _to_pil_rgb(img_like) -> Image.Image:
|
|
| 482 |
"""Normalize input to PIL RGB. Supports PIL/L/RGBA/np.array."""
|
| 483 |
if isinstance(img_like, Image.Image):
|
| 484 |
return img_like.convert("RGB")
|
| 485 |
-
# numpy array -> PIL
|
| 486 |
try:
|
| 487 |
arr = np.array(img_like)
|
| 488 |
-
if arr.ndim == 2:
|
| 489 |
arr = np.stack([arr, arr, arr], axis=-1)
|
| 490 |
return Image.fromarray(arr.astype(np.uint8), mode="RGB")
|
| 491 |
except Exception:
|
| 492 |
-
raise gr.Error("Stage-2: `depth` / `depth_image` is not a valid image
|
| 493 |
|
| 494 |
-
#
|
| 495 |
@spaces.GPU
|
| 496 |
def run_stage2_refine(
|
| 497 |
image: Image.Image, # original image (RGB)
|
| 498 |
stage1_out: Image.Image, # output from Stage-1
|
| 499 |
-
depth_img_from_stage1_input: Image.Image, #
|
| 500 |
mask_upload: Optional[Image.Image],
|
| 501 |
sketch: Optional[dict],
|
| 502 |
prompt: str,
|
|
@@ -510,34 +499,38 @@ def run_stage2_refine(
|
|
| 510 |
seed: Optional[int],
|
| 511 |
) -> Image.Image:
|
| 512 |
if image is None or stage1_out is None:
|
| 513 |
-
raise gr.Error("Please complete Stage-1
|
| 514 |
|
| 515 |
-
#
|
| 516 |
mask_l = pick_mask(mask_upload, sketch, image, dilate_px=0)
|
| 517 |
if (mask_l is None) or (mask_l.getbbox() is None):
|
| 518 |
mask_l = Image.new("L", image.size, 0)
|
| 519 |
|
| 520 |
-
#
|
| 521 |
width, height = prepare_size_for_flux(image, target_max=max_side)
|
| 522 |
orig_w, orig_h = image.size
|
| 523 |
|
| 524 |
pipe2 = get_pipe_stage2()
|
| 525 |
-
g2 =
|
|
|
|
|
|
|
| 526 |
else torch.Generator("cpu").manual_seed(random.randint(0, 2**31 - 1))
|
|
|
|
| 527 |
depth_pil = _to_pil_rgb(stage1_out) # for `depth`
|
| 528 |
depth_image_pil = _to_pil_rgb(depth_img_from_stage1_input) # for `depth_image`
|
| 529 |
-
image_rgb = _to_pil_rgb(image)
|
| 530 |
|
| 531 |
-
#
|
| 532 |
depth_pil = depth_pil.resize((width, height), Image.BICUBIC)
|
| 533 |
depth_image_pil = depth_image_pil.resize((width, height), Image.BICUBIC)
|
| 534 |
-
|
| 535 |
-
#
|
| 536 |
-
#
|
| 537 |
-
#
|
|
|
|
| 538 |
out2 = pipe2(
|
| 539 |
prompt=prompt,
|
| 540 |
-
image=image,
|
| 541 |
mask_image=mask_l,
|
| 542 |
width=width,
|
| 543 |
height=height,
|
|
@@ -545,99 +538,207 @@ def run_stage2_refine(
|
|
| 545 |
num_inference_steps=int(steps),
|
| 546 |
max_sequence_length=512,
|
| 547 |
generator=g2,
|
| 548 |
-
depth=depth_pil,
|
| 549 |
-
depth_image=depth_image_pil,
|
| 550 |
).images[0]
|
| 551 |
|
| 552 |
-
out2 = out2.resize((orig_w * 3, orig_h), Image.BICUBIC) #
|
| 553 |
return out2
|
| 554 |
|
| 555 |
-
# ===================================================================
|
| 556 |
-
|
| 557 |
# ---------------- UI ----------------
|
| 558 |
with gr.Blocks() as demo:
|
| 559 |
-
gr.Markdown(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 560 |
|
| 561 |
with gr.Row():
|
| 562 |
with gr.Column(scale=1):
|
| 563 |
-
#
|
| 564 |
-
img = gr.Image(
|
|
|
|
|
|
|
|
|
|
| 565 |
|
| 566 |
# Mask: upload or draw
|
| 567 |
with gr.Tab("Upload mask"):
|
| 568 |
-
mask_upload = gr.Image(
|
|
|
|
|
|
|
|
|
|
| 569 |
|
| 570 |
with gr.Tab("Draw mask"):
|
| 571 |
-
draw_source = gr.Radio(
|
| 572 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 573 |
sketch = gr.ImageEditor(
|
| 574 |
-
label="Sketch mask (
|
| 575 |
type="pil",
|
| 576 |
-
#
|
| 577 |
-
brush=gr.Brush(colors=["#FF0000"], default_size=24)
|
| 578 |
)
|
| 579 |
|
| 580 |
-
#
|
| 581 |
-
prompt = gr.Textbox(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 582 |
|
| 583 |
-
#
|
| 584 |
with gr.Accordion("Advanced (Depth & FLUX)", open=False):
|
| 585 |
-
encoder = gr.Dropdown(
|
| 586 |
-
|
| 587 |
-
|
| 588 |
-
|
| 589 |
-
|
| 590 |
-
|
| 591 |
-
|
| 592 |
-
|
| 593 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 594 |
|
| 595 |
run_btn = gr.Button("Run", variant="primary")
|
| 596 |
-
#
|
| 597 |
-
run_btn_stage2 = gr.Button("Run Stage-2 (
|
| 598 |
-
# =================================================
|
| 599 |
|
| 600 |
with gr.Column(scale=1):
|
| 601 |
-
depth_preview = gr.Image(
|
| 602 |
-
|
| 603 |
-
|
| 604 |
-
|
| 605 |
-
|
| 606 |
-
|
| 607 |
-
|
| 608 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 609 |
img.change(
|
| 610 |
fn=preview_depth,
|
| 611 |
inputs=[img, encoder, max_res, input_size, fp32],
|
| 612 |
outputs=[depth_preview],
|
| 613 |
)
|
| 614 |
|
| 615 |
-
# Prepare canvas
|
| 616 |
prepare_btn.click(
|
| 617 |
fn=prepare_canvas,
|
| 618 |
inputs=[img, depth_preview, draw_source],
|
| 619 |
outputs=[sketch],
|
| 620 |
)
|
| 621 |
|
| 622 |
-
#
|
| 623 |
run_btn.click(
|
| 624 |
fn=run_depth_and_fill,
|
| 625 |
inputs=[img, mask_upload, sketch, prompt, encoder, max_res, input_size, fp32,
|
| 626 |
max_side, mask_dilate_px, guidance_scale, steps, seed],
|
| 627 |
outputs=[out, mask_preview],
|
| 628 |
api_name="run",
|
|
|
|
|
|
|
|
|
|
|
|
|
| 629 |
)
|
| 630 |
|
| 631 |
-
#
|
| 632 |
run_btn_stage2.click(
|
| 633 |
fn=run_stage2_refine,
|
| 634 |
-
inputs=[img, out, depth_preview,
|
| 635 |
mask_upload, sketch, prompt, encoder, max_res, input_size, fp32,
|
| 636 |
max_side, guidance_scale, steps, seed],
|
| 637 |
outputs=[out_stage2],
|
| 638 |
api_name="run_stage2",
|
| 639 |
)
|
| 640 |
-
# ====================================================================
|
| 641 |
|
| 642 |
if __name__ == "__main__":
|
| 643 |
os.environ.setdefault("HF_HUB_DISABLE_TELEMETRY", "1")
|
|
|
|
| 4 |
BASE_DIR = pathlib.Path(__file__).resolve().parent
|
| 5 |
LOCAL_DIFFUSERS_SRC = BASE_DIR / "code_edit" / "diffusers" / "src"
|
| 6 |
|
| 7 |
+
# Ensure local diffusers is importable
|
| 8 |
if (LOCAL_DIFFUSERS_SRC / "diffusers").exists():
|
| 9 |
sys.path.insert(0, str(LOCAL_DIFFUSERS_SRC))
|
| 10 |
else:
|
|
|
|
| 21 |
# ===========================================================================
|
| 22 |
|
| 23 |
import os
|
|
|
|
|
|
|
| 24 |
import subprocess
|
| 25 |
import random
|
| 26 |
+
from typing import Optional, Tuple, Dict, Any
|
| 27 |
|
| 28 |
import torch
|
| 29 |
from PIL import Image, ImageOps
|
|
|
|
| 43 |
BASE_DIR / "code_edit" / "stage2" / "checkpoint-20000" / "pytorch_lora_weights.safetensors",
|
| 44 |
]
|
| 45 |
|
| 46 |
+
# Import depth helper
|
| 47 |
if str(CODE_DEPTH) not in sys.path:
|
| 48 |
sys.path.insert(0, str(CODE_DEPTH))
|
| 49 |
from depth_infer import DepthModel # noqa: E402
|
| 50 |
|
| 51 |
+
# Import your custom diffusers (local fork)
|
| 52 |
if str(CODE_EDIT / "diffusers") not in sys.path:
|
| 53 |
sys.path.insert(0, str(CODE_EDIT / "diffusers"))
|
| 54 |
from diffusers.pipelines.flux.pipeline_flux_fill_unmasked_image_condition_version import ( # type: ignore # noqa: E402
|
| 55 |
FluxFillPipeline_token12_depth_only as FluxFillPipeline,
|
| 56 |
)
|
| 57 |
|
| 58 |
+
# ---------------- Asset preparation (on-demand) ----------------
|
| 59 |
def _have_all_assets() -> bool:
|
| 60 |
return all(p.is_file() for p in EXPECTED_ASSETS)
|
| 61 |
|
|
|
|
| 65 |
os.chmod(p, os.stat(p).st_mode | 0o111)
|
| 66 |
|
| 67 |
def ensure_assets_if_missing():
|
| 68 |
+
"""
|
| 69 |
+
If SKIP_ASSET_DOWNLOAD=1 -> skip checks.
|
| 70 |
+
Otherwise ensure checkpoints/LoRAs exist; if missing, run get_assets.sh.
|
| 71 |
+
"""
|
| 72 |
if os.getenv("SKIP_ASSET_DOWNLOAD") == "1":
|
| 73 |
print("↪️ SKIP_ASSET_DOWNLOAD=1 -> skip asset download check")
|
| 74 |
return
|
|
|
|
| 94 |
print(f"⚠️ Asset prepare failed: {e}")
|
| 95 |
|
| 96 |
# ---------------- Global singletons ----------------
|
| 97 |
+
_MODELS: Dict[str, DepthModel] = {}
|
| 98 |
_PIPE: Optional[FluxFillPipeline] = None
|
| 99 |
# ==== STAGE-2 ONLY ADDED: singleton ====
|
| 100 |
_PIPE_STAGE2: Optional[FluxFillPipelineStage2] = None
|
|
|
|
| 106 |
return _MODELS[encoder]
|
| 107 |
|
| 108 |
def get_pipe() -> FluxFillPipeline:
|
| 109 |
+
"""
|
| 110 |
+
Load Stage-1 pipeline (FluxFillPipeline_token12_depth_only) and mount Stage-1 LoRA if present.
|
| 111 |
+
"""
|
| 112 |
global _PIPE
|
| 113 |
if _PIPE is not None:
|
| 114 |
return _PIPE
|
|
|
|
| 130 |
print(f"[pipe] loading FLUX.1-Fill-dev (dtype={dtype}, device={device}, local={use_local})")
|
| 131 |
try:
|
| 132 |
if use_local:
|
| 133 |
+
pipe = FluxFillPipeline.from_pretrained(local_flux, torch_dtype=dtype).to(device)
|
|
|
|
|
|
|
| 134 |
else:
|
|
|
|
| 135 |
pipe = FluxFillPipeline.from_pretrained(
|
| 136 |
"black-forest-labs/FLUX.1-Fill-dev",
|
| 137 |
torch_dtype=dtype,
|
|
|
|
| 140 |
except Exception as e:
|
| 141 |
raise RuntimeError(
|
| 142 |
"Failed to load FLUX.1-Fill-dev. "
|
| 143 |
+
"Ensure gated access and HF_TOKEN; or pre-download to local cache."
|
|
|
|
| 144 |
) from e
|
| 145 |
|
| 146 |
+
# -------- LoRA (Stage-1) --------
|
| 147 |
lora_dir = CODE_EDIT / "stage1" / "checkpoint-4800"
|
| 148 |
+
lora_file = "pytorch_lora_weights.safetensors"
|
| 149 |
adapter_name = "stage1"
|
| 150 |
|
| 151 |
if lora_dir.exists():
|
| 152 |
try:
|
| 153 |
+
import peft # assert backend presence
|
| 154 |
print(f"[pipe] loading LoRA from: {lora_dir}/{lora_file}")
|
| 155 |
pipe.load_lora_weights(
|
| 156 |
str(lora_dir),
|
| 157 |
+
weight_name=lora_file,
|
| 158 |
+
adapter_name=adapter_name,
|
| 159 |
)
|
|
|
|
| 160 |
try:
|
| 161 |
pipe.set_adapters(adapter_name, scale=1.0)
|
| 162 |
+
print(f"[pipe] set_adapters('{adapter_name}', 1.0)")
|
| 163 |
except Exception as e_set:
|
| 164 |
print(f"[pipe] set_adapters not available ({e_set}); trying fuse_lora()")
|
|
|
|
| 165 |
try:
|
| 166 |
pipe.fuse_lora(lora_scale=1.0)
|
| 167 |
print("[pipe] fuse_lora(lora_scale=1.0) done")
|
|
|
|
| 169 |
print(f"[pipe] fuse_lora failed: {e_fuse}")
|
| 170 |
print("[pipe] LoRA ready ✅")
|
| 171 |
except ImportError:
|
| 172 |
+
print("[pipe] peft not installed; LoRA skipped (add `peft>=0.11`).")
|
| 173 |
except Exception as e:
|
| 174 |
print(f"[pipe] load_lora_weights failed (continue without): {e}")
|
| 175 |
else:
|
|
|
|
| 181 |
# ==== STAGE-2 ONLY ADDED: Stage-2 loader (no change to Stage-1 logic) ====
|
| 182 |
def get_pipe_stage2() -> FluxFillPipelineStage2:
|
| 183 |
"""
|
| 184 |
+
Load Stage-2 FluxFillPipeline_token12_depth and mount Stage-2 LoRA.
|
| 185 |
"""
|
| 186 |
global _PIPE_STAGE2
|
| 187 |
if _PIPE_STAGE2 is not None:
|
|
|
|
| 230 |
raise RuntimeError(f"Stage-2 LoRA dir not found: {lora_dir2}")
|
| 231 |
if weight_name is None:
|
| 232 |
raise RuntimeError(
|
| 233 |
+
f"Stage-2 LoRA weight not found under {lora_dir2}. Tried: {candidate_names}"
|
|
|
|
| 234 |
)
|
| 235 |
|
| 236 |
try:
|
| 237 |
import peft # noqa: F401
|
| 238 |
except Exception as e:
|
| 239 |
+
raise RuntimeError("peft is not installed (requires peft>=0.11).") from e
|
|
|
|
|
|
|
| 240 |
|
| 241 |
try:
|
| 242 |
print(f"[stage2] loading LoRA: {lora_dir2}/{weight_name}")
|
|
|
|
| 269 |
Output: white = region to remove/fill, black = keep.
|
| 270 |
"""
|
| 271 |
if im.mode == "RGBA":
|
| 272 |
+
mask = im.split()[-1] # alpha as mask
|
| 273 |
else:
|
| 274 |
mask = im.convert("L")
|
| 275 |
+
# Simple binarization & denoise
|
| 276 |
mask = mask.point(lambda p: 255 if p > 16 else 0)
|
| 277 |
+
return mask # Do not invert; white = mask region
|
| 278 |
|
| 279 |
def dilate_mask(mask_l: Image.Image, px: int) -> Image.Image:
|
| 280 |
+
"""Dilate the white region by ~px pixels."""
|
| 281 |
if px <= 0:
|
| 282 |
return mask_l
|
| 283 |
arr = np.array(mask_l, dtype=np.uint8)
|
|
|
|
| 288 |
|
| 289 |
def _mask_from_red(img: Image.Image, out_size: Tuple[int, int]) -> Image.Image:
|
| 290 |
"""
|
| 291 |
+
Extract "pure red strokes" as a binary mask (white=brush, black=others) from RGBA/RGB.
|
| 292 |
+
Thresholds are lenient to tolerate compression/resampling.
|
| 293 |
"""
|
| 294 |
arr = np.array(img.convert("RGBA"))
|
| 295 |
r, g, b, a = arr[..., 0], arr[..., 1], arr[..., 2], arr[..., 3]
|
|
|
|
|
|
|
| 296 |
red_hit = (r >= 200) & (g <= 40) & (b <= 40) & (a > 0)
|
|
|
|
| 297 |
mask = (red_hit.astype(np.uint8) * 255)
|
| 298 |
m = Image.fromarray(mask, mode="L").resize(out_size, Image.NEAREST)
|
| 299 |
return m
|
|
|
|
| 305 |
dilate_px: int = 0,
|
| 306 |
) -> Optional[Image.Image]:
|
| 307 |
"""
|
| 308 |
+
Selection rules:
|
| 309 |
+
1) If a mask is uploaded: use it directly (white=mask)
|
| 310 |
+
2) Else from ImageEditor output, only red strokes are recognized as mask:
|
| 311 |
- Try sketch_data['mask'] first (some versions provide it)
|
| 312 |
- Else merge red strokes from sketch_data['layers'][*]['image']
|
| 313 |
- If still none, try sketch_data['composite'] for red strokes
|
|
|
|
| 336 |
li = lyr.get("image") or lyr.get("mask")
|
| 337 |
if isinstance(li, Image.Image):
|
| 338 |
m_layer = _mask_from_red(li, base_image.size)
|
| 339 |
+
acc = ImageOps.lighter(acc, m_layer) # union
|
|
|
|
| 340 |
if acc.getbbox() is not None:
|
| 341 |
return dilate_mask(acc, dilate_px) if dilate_px > 0 else acc
|
| 342 |
|
|
|
|
| 347 |
if m_comp.getbbox() is not None:
|
| 348 |
return dilate_mask(m_comp, dilate_px) if dilate_px > 0 else m_comp
|
| 349 |
|
| 350 |
+
# 3) No valid mask
|
| 351 |
return None
|
| 352 |
|
|
|
|
| 353 |
def _round_mult64(x: float, mode: str = "nearest") -> int:
|
| 354 |
"""
|
| 355 |
Align x to a multiple of 64:
|
|
|
|
| 367 |
def prepare_size_for_flux(img: Image.Image, target_max: int = 1024) -> tuple[int, int]:
|
| 368 |
"""
|
| 369 |
Steps:
|
| 370 |
+
1) Round w,h up to multiples of 64 (avoid too-small sizes)
|
| 371 |
2) Fix the long side to target_max (default 1024)
|
| 372 |
+
3) Scale the short side proportionally and align to a multiple of 64 (>= 64)
|
| 373 |
"""
|
| 374 |
w, h = img.size
|
|
|
|
|
|
|
| 375 |
w1 = max(64, _round_mult64(w, mode="ceil"))
|
| 376 |
h1 = max(64, _round_mult64(h, mode="ceil"))
|
| 377 |
|
|
|
|
| 378 |
if w1 >= h1:
|
| 379 |
out_w = target_max
|
| 380 |
scaled_h = h1 * (target_max / w1)
|
|
|
|
| 392 |
if image is None:
|
| 393 |
return None
|
| 394 |
dm = get_model(encoder)
|
|
|
|
| 395 |
d_rgb = dm.infer(image=image, max_res=max_res, input_size=input_size, fp32=fp32, grayscale=False)
|
| 396 |
return d_rgb
|
| 397 |
|
|
|
|
| 399 |
base = depth_img if source == "depth" else image
|
| 400 |
if base is None:
|
| 401 |
raise gr.Error('Please upload an image (and wait for the depth preview), then click "Prepare canvas".')
|
|
|
|
| 402 |
return gr.update(value=base)
|
| 403 |
|
| 404 |
+
# ---------------- Stage-1: depth(color) -> fill ----------------
|
| 405 |
@spaces.GPU
|
| 406 |
def run_depth_and_fill(
|
| 407 |
image: Image.Image,
|
|
|
|
| 426 |
depth_rgb: Image.Image = depth_model.infer(
|
| 427 |
image=image, max_res=max_res, input_size=input_size, fp32=fp32, grayscale=False
|
| 428 |
).convert("RGB")
|
| 429 |
+
|
| 430 |
print(f"[DEBUG] Depth RGB: mode={depth_rgb.mode}, size={depth_rgb.size}")
|
| 431 |
|
| 432 |
# 2) extract mask (uploaded > drawn)
|
| 433 |
mask_l = pick_mask(mask_upload, sketch, image, dilate_px=mask_dilate_px)
|
| 434 |
if (mask_l is None) or (mask_l.getbbox() is None):
|
| 435 |
+
raise gr.Error("No valid mask detected: please draw with the red brush or upload a binary mask.")
|
| 436 |
+
|
| 437 |
print(f"[DEBUG] Mask: mode={mask_l.mode}, size={mask_l.size}, bbox={mask_l.getbbox()}")
|
| 438 |
|
| 439 |
# 3) decide output size
|
|
|
|
| 441 |
orig_w, orig_h = image.size
|
| 442 |
print(f"[DEBUG] FLUX size: {width}x{height}, original: {orig_w}x{orig_h}")
|
| 443 |
|
| 444 |
+
# 4) run FLUX pipeline (key: use depth_rgb as both image and depth input)
|
|
|
|
| 445 |
pipe = get_pipe()
|
| 446 |
+
generator = (
|
| 447 |
+
torch.Generator("cpu").manual_seed(int(seed))
|
| 448 |
+
if (seed is not None and seed >= 0)
|
| 449 |
+
else torch.Generator("cpu").manual_seed(random.randint(0, 2**31 - 1))
|
| 450 |
+
)
|
| 451 |
|
| 452 |
result = pipe(
|
| 453 |
prompt=prompt,
|
| 454 |
+
image=depth_rgb, # use the colored depth map instead of original image
|
| 455 |
mask_image=mask_l,
|
| 456 |
width=width,
|
| 457 |
height=height,
|
|
|
|
| 459 |
num_inference_steps=int(steps),
|
| 460 |
max_sequence_length=512,
|
| 461 |
generator=generator,
|
| 462 |
+
depth=depth_rgb, # feed depth (colored)
|
| 463 |
).images[0]
|
| 464 |
|
| 465 |
final_result = result.resize((orig_w, orig_h), Image.BICUBIC)
|
| 466 |
+
|
| 467 |
# return result and mask preview
|
| 468 |
mask_preview = mask_l.resize((orig_w, orig_h), Image.NEAREST).convert("RGB")
|
| 469 |
return final_result, mask_preview
|
|
|
|
| 472 |
"""Normalize input to PIL RGB. Supports PIL/L/RGBA/np.array."""
|
| 473 |
if isinstance(img_like, Image.Image):
|
| 474 |
return img_like.convert("RGB")
|
|
|
|
| 475 |
try:
|
| 476 |
arr = np.array(img_like)
|
| 477 |
+
if arr.ndim == 2:
|
| 478 |
arr = np.stack([arr, arr, arr], axis=-1)
|
| 479 |
return Image.fromarray(arr.astype(np.uint8), mode="RGB")
|
| 480 |
except Exception:
|
| 481 |
+
raise gr.Error("Stage-2: `depth` / `depth_image` is not a valid image object.")
|
| 482 |
|
| 483 |
+
# ---------------- Stage-2: REQUIRED refine/render ----------------
|
| 484 |
@spaces.GPU
|
| 485 |
def run_stage2_refine(
|
| 486 |
image: Image.Image, # original image (RGB)
|
| 487 |
stage1_out: Image.Image, # output from Stage-1
|
| 488 |
+
depth_img_from_stage1_input: Image.Image, # Stage-1 depth preview (from UI)
|
| 489 |
mask_upload: Optional[Image.Image],
|
| 490 |
sketch: Optional[dict],
|
| 491 |
prompt: str,
|
|
|
|
| 499 |
seed: Optional[int],
|
| 500 |
) -> Image.Image:
|
| 501 |
if image is None or stage1_out is None:
|
| 502 |
+
raise gr.Error("Please complete Stage-1 first (needs original image and Stage-1 output).")
|
| 503 |
|
| 504 |
+
# Allow refine without mask (use all-black)
|
| 505 |
mask_l = pick_mask(mask_upload, sketch, image, dilate_px=0)
|
| 506 |
if (mask_l is None) or (mask_l.getbbox() is None):
|
| 507 |
mask_l = Image.new("L", image.size, 0)
|
| 508 |
|
| 509 |
+
# Unify sizes
|
| 510 |
width, height = prepare_size_for_flux(image, target_max=max_side)
|
| 511 |
orig_w, orig_h = image.size
|
| 512 |
|
| 513 |
pipe2 = get_pipe_stage2()
|
| 514 |
+
g2 = (
|
| 515 |
+
torch.Generator("cpu").manual_seed(int(seed))
|
| 516 |
+
if (seed is not None and seed >= 0)
|
| 517 |
else torch.Generator("cpu").manual_seed(random.randint(0, 2**31 - 1))
|
| 518 |
+
)
|
| 519 |
depth_pil = _to_pil_rgb(stage1_out) # for `depth`
|
| 520 |
depth_image_pil = _to_pil_rgb(depth_img_from_stage1_input) # for `depth_image`
|
| 521 |
+
image_rgb = _to_pil_rgb(image)
|
| 522 |
|
| 523 |
+
# Resize to (width, height)
|
| 524 |
depth_pil = depth_pil.resize((width, height), Image.BICUBIC)
|
| 525 |
depth_image_pil = depth_image_pil.resize((width, height), Image.BICUBIC)
|
| 526 |
+
|
| 527 |
+
# Mapping:
|
| 528 |
+
# image = original RGB
|
| 529 |
+
# depth = Stage-1 output (updated geometry)
|
| 530 |
+
# depth_image = Stage-1 input depth (UI depth preview)
|
| 531 |
out2 = pipe2(
|
| 532 |
prompt=prompt,
|
| 533 |
+
image=image, # original image
|
| 534 |
mask_image=mask_l,
|
| 535 |
width=width,
|
| 536 |
height=height,
|
|
|
|
| 538 |
num_inference_steps=int(steps),
|
| 539 |
max_sequence_length=512,
|
| 540 |
generator=g2,
|
| 541 |
+
depth=depth_pil,
|
| 542 |
+
depth_image=depth_image_pil,
|
| 543 |
).images[0]
|
| 544 |
|
| 545 |
+
out2 = out2.resize((orig_w * 3, orig_h), Image.BICUBIC) # keep your 3× showcase layout
|
| 546 |
return out2
|
| 547 |
|
|
|
|
|
|
|
| 548 |
# ---------------- UI ----------------
|
| 549 |
with gr.Blocks() as demo:
|
| 550 |
+
gr.Markdown(
|
| 551 |
+
"""
|
| 552 |
+
# GeoRemover · Depth-Guided Object Removal (Two-Stage, Stage-2 REQUIRED)
|
| 553 |
+
|
| 554 |
+
**Pipeline overview**
|
| 555 |
+
1) Compute a **colored depth map** from your input image.
|
| 556 |
+
2) You create a **removal mask** (red brush or upload).
|
| 557 |
+
3) **Stage-1** runs FLUX Fill with depth guidance to get a first pass.
|
| 558 |
+
4) **Stage-2 (REQUIRED)** renders the final result from depth → image using Stage-1 output and the original depth.
|
| 559 |
+
|
| 560 |
+
> ⚠️ **Stage-2 is required.** Always click **Run Stage-2 (Render)** *after* Stage-1 finishes. Stage-1 alone is not the final output.
|
| 561 |
+
|
| 562 |
+
---
|
| 563 |
+
|
| 564 |
+
### Quick start
|
| 565 |
+
1. **Upload image** (left). Wait for **Depth preview (colored)** (right).
|
| 566 |
+
2. In **Draw mask**, pick **Draw on: _image_** or **_depth_**, then click **Prepare canvas**.
|
| 567 |
+
3. Paint the region to remove using the **red brush** (**red = remove**).
|
| 568 |
+
4. Optionally adjust **Mask dilation** for thin edges.
|
| 569 |
+
5. Enter a concise **Prompt** describing the fill content.
|
| 570 |
+
6. Click **Run** → produces **Stage-1** (first pass).
|
| 571 |
+
7. Click **Run Stage-2 (Render)** → produces the **final** result.
|
| 572 |
+
|
| 573 |
+
---
|
| 574 |
+
|
| 575 |
+
### Mask rules & tips
|
| 576 |
+
- Only **red strokes** are treated as mask (**white = remove, black = keep** internally).
|
| 577 |
+
- Paint **slightly larger** than the object boundary to avoid seams/halos.
|
| 578 |
+
- If you have a binary mask already, use **Upload mask**.
|
| 579 |
+
- **Mask dilation (px)** expands the mask to cover thin borders.
|
| 580 |
+
"""
|
| 581 |
+
)
|
| 582 |
|
| 583 |
with gr.Row():
|
| 584 |
with gr.Column(scale=1):
|
| 585 |
+
# Input image
|
| 586 |
+
img = gr.Image(
|
| 587 |
+
label="Upload image",
|
| 588 |
+
type="pil",
|
| 589 |
+
)
|
| 590 |
|
| 591 |
# Mask: upload or draw
|
| 592 |
with gr.Tab("Upload mask"):
|
| 593 |
+
mask_upload = gr.Image(
|
| 594 |
+
label="Mask (optional)",
|
| 595 |
+
type="pil",
|
| 596 |
+
)
|
| 597 |
|
| 598 |
with gr.Tab("Draw mask"):
|
| 599 |
+
draw_source = gr.Radio(
|
| 600 |
+
["image", "depth"],
|
| 601 |
+
value="image",
|
| 602 |
+
label="Draw on",
|
| 603 |
+
)
|
| 604 |
+
prepare_btn = gr.Button("Prepare canvas", variant="secondary")
|
| 605 |
+
gr.Markdown(
|
| 606 |
+
"""
|
| 607 |
+
**Canvas usage**
|
| 608 |
+
- Click **Prepare canvas** after selecting *image* or *depth*.
|
| 609 |
+
- Use the **red brush** only—red strokes are extracted as the removal mask.
|
| 610 |
+
- Switch tabs anytime if you prefer uploading a ready-made mask.
|
| 611 |
+
"""
|
| 612 |
+
)
|
| 613 |
sketch = gr.ImageEditor(
|
| 614 |
+
label="Sketch mask (red = remove)",
|
| 615 |
type="pil",
|
| 616 |
+
brush=gr.Brush(colors=["#FF0000"], default_size=24),
|
|
|
|
| 617 |
)
|
| 618 |
|
| 619 |
+
# Prompt
|
| 620 |
+
prompt = gr.Textbox(
|
| 621 |
+
label="Prompt",
|
| 622 |
+
value="A beautiful scene",
|
| 623 |
+
placeholder="don't change it",
|
| 624 |
+
)
|
| 625 |
|
| 626 |
+
# Tunables
|
| 627 |
with gr.Accordion("Advanced (Depth & FLUX)", open=False):
|
| 628 |
+
encoder = gr.Dropdown(
|
| 629 |
+
["vits", "vitl"],
|
| 630 |
+
value="vitl",
|
| 631 |
+
label="Depth encoder",
|
| 632 |
+
)
|
| 633 |
+
max_res = gr.Slider(
|
| 634 |
+
512, 2048, value=1280, step=64,
|
| 635 |
+
label="Depth: max_res",
|
| 636 |
+
)
|
| 637 |
+
input_size = gr.Slider(
|
| 638 |
+
256, 1024, value=518, step=2,
|
| 639 |
+
label="Depth: input_size",
|
| 640 |
+
)
|
| 641 |
+
fp32 = gr.Checkbox(
|
| 642 |
+
False,
|
| 643 |
+
label="Depth: use FP32 (default FP16)",
|
| 644 |
+
)
|
| 645 |
+
max_side = gr.Slider(
|
| 646 |
+
512, 1536, value=1024, step=64,
|
| 647 |
+
label="FLUX: max side (px)",
|
| 648 |
+
)
|
| 649 |
+
mask_dilate_px = gr.Slider(
|
| 650 |
+
0, 128, value=0, step=1,
|
| 651 |
+
label="Mask dilation (px)",
|
| 652 |
+
)
|
| 653 |
+
guidance_scale = gr.Slider(
|
| 654 |
+
0, 50, value=30, step=0.5,
|
| 655 |
+
label="FLUX: guidance_scale",
|
| 656 |
+
)
|
| 657 |
+
steps = gr.Slider(
|
| 658 |
+
10, 75, value=50, step=1,
|
| 659 |
+
label="FLUX: steps",
|
| 660 |
+
)
|
| 661 |
+
seed = gr.Number(
|
| 662 |
+
value=0, precision=0,
|
| 663 |
+
label="Seed (>=0 = fixed; empty = random)",
|
| 664 |
+
)
|
| 665 |
|
| 666 |
run_btn = gr.Button("Run", variant="primary")
|
| 667 |
+
# Stage-2 is REQUIRED: keep disabled until Stage-1 finishes
|
| 668 |
+
run_btn_stage2 = gr.Button("Run Stage-2 (Render)", variant="secondary", interactive=False)
|
|
|
|
| 669 |
|
| 670 |
with gr.Column(scale=1):
|
| 671 |
+
depth_preview = gr.Image(
|
| 672 |
+
label="Depth preview (colored)",
|
| 673 |
+
interactive=False,
|
| 674 |
+
)
|
| 675 |
+
mask_preview = gr.Image(
|
| 676 |
+
label="Mask preview (areas to remove)",
|
| 677 |
+
interactive=False,
|
| 678 |
+
)
|
| 679 |
+
out = gr.Image(
|
| 680 |
+
label="Output (Stage-1 first pass)",
|
| 681 |
+
)
|
| 682 |
+
out_stage2 = gr.Image(
|
| 683 |
+
label="Final Output (Stage-2)",
|
| 684 |
+
)
|
| 685 |
+
|
| 686 |
+
gr.Markdown(
|
| 687 |
+
"""
|
| 688 |
+
### Why Stage-2 is required
|
| 689 |
+
Stage-1 provides a depth-guided fill that is *not final*. **Stage-2 renders** the definitive image by leveraging:
|
| 690 |
+
- **Stage-1 output** as updated geometry hints, and
|
| 691 |
+
- **Original colored depth** as `depth_image` guidance.
|
| 692 |
+
Skipping Stage-2 will leave the process incomplete.
|
| 693 |
+
|
| 694 |
+
### Troubleshooting
|
| 695 |
+
- **“No valid mask detected”**: Either upload a binary mask (white=remove) **or** draw with **red brush** after clicking **Prepare canvas**.
|
| 696 |
+
- **Seams/halos**: Increase **Mask dilation (px)** (e.g., 8–16) and re-run both stages.
|
| 697 |
+
- **Prompt not followed**: Lower **guidance_scale** (e.g., 18–24) and make the prompt more concrete.
|
| 698 |
+
- **Depth looks noisy**: Use **vitl**, increase **Depth: max_res**, or enable **FP32**.
|
| 699 |
+
"""
|
| 700 |
+
)
|
| 701 |
+
|
| 702 |
+
# ===== Helpers to toggle Stage-2 button =====
|
| 703 |
+
def _enable_button():
|
| 704 |
+
return gr.update(interactive=True)
|
| 705 |
+
|
| 706 |
+
# Auto depth preview on image change
|
| 707 |
img.change(
|
| 708 |
fn=preview_depth,
|
| 709 |
inputs=[img, encoder, max_res, input_size, fp32],
|
| 710 |
outputs=[depth_preview],
|
| 711 |
)
|
| 712 |
|
| 713 |
+
# Prepare canvas for drawing on image or depth
|
| 714 |
prepare_btn.click(
|
| 715 |
fn=prepare_canvas,
|
| 716 |
inputs=[img, depth_preview, draw_source],
|
| 717 |
outputs=[sketch],
|
| 718 |
)
|
| 719 |
|
| 720 |
+
# Stage-1
|
| 721 |
run_btn.click(
|
| 722 |
fn=run_depth_and_fill,
|
| 723 |
inputs=[img, mask_upload, sketch, prompt, encoder, max_res, input_size, fp32,
|
| 724 |
max_side, mask_dilate_px, guidance_scale, steps, seed],
|
| 725 |
outputs=[out, mask_preview],
|
| 726 |
api_name="run",
|
| 727 |
+
).then( # Enable Stage-2 only after Stage-1 completes
|
| 728 |
+
fn=_enable_button,
|
| 729 |
+
inputs=[],
|
| 730 |
+
outputs=[run_btn_stage2],
|
| 731 |
)
|
| 732 |
|
| 733 |
+
# Stage-2 (REQUIRED; unlocked after Stage-1)
|
| 734 |
run_btn_stage2.click(
|
| 735 |
fn=run_stage2_refine,
|
| 736 |
+
inputs=[img, out, depth_preview,
|
| 737 |
mask_upload, sketch, prompt, encoder, max_res, input_size, fp32,
|
| 738 |
max_side, guidance_scale, steps, seed],
|
| 739 |
outputs=[out_stage2],
|
| 740 |
api_name="run_stage2",
|
| 741 |
)
|
|
|
|
| 742 |
|
| 743 |
if __name__ == "__main__":
|
| 744 |
os.environ.setdefault("HF_HUB_DISABLE_TELEMETRY", "1")
|