# Copyright (2025) Bytedance Ltd. and/or its affiliates # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import numpy as np import os import torch import os import cv2 import numpy as np import matplotlib.pyplot as plt import matplotlib.cm as cm from PIL import Image from video_depth_anything.video_depth import VideoDepthAnything from utils.dc_utils import read_video_frames, save_video import tqdm if __name__ == '__main__': parser = argparse.ArgumentParser(description='Video Depth Anything') parser.add_argument('--input_size', type=int, default=518) parser.add_argument('--max_res', type=int, default=1280) parser.add_argument('--encoder', type=str, default='vitl', choices=['vits', 'vitl']) parser.add_argument('--max_len', type=int, default=-1, help='maximum length of the input video, -1 means no limit') parser.add_argument('--target_fps', type=int, default=-1, help='target fps of the input video, -1 means the original fps') parser.add_argument('--fp32', action='store_true', help='model infer with torch.float32, default is torch.float16') parser.add_argument('--grayscale', action='store_true', help='do not apply colorful palette') parser.add_argument('--save_npz', action='store_true', help='save depths as npz') parser.add_argument('--save_exr', action='store_true', help='save depths as exr') args = parser.parse_args() DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu' model_configs = { 'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]}, 'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]}, } video_depth_anything = VideoDepthAnything(**model_configs[args.encoder]) video_depth_anything.load_state_dict(torch.load(f'./checkpoints/video_depth_anything_{args.encoder}.pth', map_location='cpu'), strict=True) video_depth_anything = video_depth_anything.to(DEVICE).eval() # place input dir and out dir here root_img_dir = "RORD/train/img" root_gt_dir = "RORD/train/gt" save_root_img_base = "RORD/val/img_depth" save_root_gt_base = "RORD/val/gt_depth" video_ids = sorted(os.listdir(root_img_dir)) for video_id in tqdm.tqdm(video_ids): frame_dir = os.path.join(root_img_dir, video_id) frame_paths = sorted([ os.path.join(frame_dir, fname) for fname in os.listdir(frame_dir) if fname.endswith(".jpg") or fname.endswith(".png") ]) frames = [cv2.imread(p)[:, :, ::-1] for p in frame_paths] gt_path = frame_paths[0].replace("/img/", "/gt/") gt_img = cv2.imread(gt_path)[:, :, ::-1] # BGR to RGB frames.append(gt_img) resized_frames = [] max_res = 1280 for f in frames: h, w = f.shape[:2] if max(h, w) > max_res: scale = max_res / max(h, w) f = cv2.resize(f, (int(w * scale), int(h * scale))) resized_frames.append(f) resized_frames = np.stack(resized_frames, axis=0) depths, _ = video_depth_anything.infer_video_depth( resized_frames, 32, input_size=518, device=DEVICE, fp32=False ) save_root_img = os.path.join(save_root_img_base, video_id) save_root_gt = os.path.join(save_root_gt_base, video_id) os.makedirs(save_root_img, exist_ok=True) os.makedirs(save_root_gt, exist_ok=True) colormap = np.array(cm.get_cmap("inferno").colors) d_min, d_max = depths.min(), depths.max() for i, path in enumerate(frame_paths): fname = os.path.basename(path) depth = depths[i] depth_norm = ((depth - d_min) / (d_max - d_min + 1e-6) * 255).astype(np.uint8) depth_vis = (colormap[depth_norm] * 255).astype(np.uint8) # shape: (H, W, 3), uint8 img_path = os.path.join(save_root_img, fname) Image.fromarray(depth_vis).save(img_path) gt_depth = depths[-1] gt_norm = ((gt_depth - d_min) / (d_max - d_min + 1e-6) * 255).astype(np.uint8) gt_vis = (colormap[gt_norm] * 255).astype(np.uint8) gt_save_path = os.path.join(save_root_gt, fname) Image.fromarray(gt_vis).save(gt_save_path)