Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -8,88 +8,32 @@ from tortoise.api import TextToSpeech
|
|
| 8 |
from tortoise.utils.text import split_and_recombine_text
|
| 9 |
from tortoise.utils.audio import load_audio, load_voice, load_voices
|
| 10 |
|
| 11 |
-
VOICE_OPTIONS = [
|
| 12 |
-
"angie",
|
| 13 |
-
"deniro",
|
| 14 |
-
"freeman",
|
| 15 |
-
"halle",
|
| 16 |
-
"lj",
|
| 17 |
-
"myself",
|
| 18 |
-
"pat2",
|
| 19 |
-
"snakes",
|
| 20 |
-
"tom",
|
| 21 |
-
"daws",
|
| 22 |
-
"dreams",
|
| 23 |
-
"grace",
|
| 24 |
-
"lescault",
|
| 25 |
-
"weaver",
|
| 26 |
-
"applejack",
|
| 27 |
-
"daniel",
|
| 28 |
-
"emma",
|
| 29 |
-
"geralt",
|
| 30 |
-
"jlaw",
|
| 31 |
-
"mol",
|
| 32 |
-
"pat",
|
| 33 |
-
"rainbow",
|
| 34 |
-
"tim_reynolds",
|
| 35 |
-
"atkins",
|
| 36 |
-
"dortice",
|
| 37 |
-
"empire",
|
| 38 |
-
"kennard",
|
| 39 |
-
"mouse",
|
| 40 |
-
"william",
|
| 41 |
-
"jane_eyre",
|
| 42 |
-
"random", # special option for random voice
|
| 43 |
-
]
|
| 44 |
-
|
| 45 |
|
| 46 |
def inference(
|
| 47 |
text,
|
| 48 |
-
|
| 49 |
-
voice,
|
| 50 |
-
voice_b,
|
| 51 |
seed,
|
| 52 |
-
split_by_newline,
|
| 53 |
):
|
| 54 |
-
|
| 55 |
-
with open(script.name) as f:
|
| 56 |
-
text = f.read()
|
| 57 |
-
if text.strip() == "":
|
| 58 |
-
raise gr.Error("Please provide either text or script file with content.")
|
| 59 |
-
|
| 60 |
-
if split_by_newline == "Yes":
|
| 61 |
-
texts = list(filter(lambda x: x.strip() != "", text.split("\n")))
|
| 62 |
-
else:
|
| 63 |
-
texts = split_and_recombine_text(text)
|
| 64 |
-
|
| 65 |
-
voices = [voice]
|
| 66 |
-
if voice_b != "disabled":
|
| 67 |
-
voices.append(voice_b)
|
| 68 |
-
|
| 69 |
-
if len(voices) == 1:
|
| 70 |
-
voice_samples, conditioning_latents = load_voice(voice)
|
| 71 |
-
else:
|
| 72 |
-
voice_samples, conditioning_latents = load_voices(voices)
|
| 73 |
|
| 74 |
start_time = time.time()
|
| 75 |
|
| 76 |
-
|
| 77 |
for j, text in enumerate(texts):
|
| 78 |
for audio_frame in tts.tts_with_preset(
|
| 79 |
text,
|
| 80 |
-
voice_samples=
|
| 81 |
-
|
| 82 |
-
preset="ultra_fast",
|
| 83 |
-
k=1
|
| 84 |
):
|
| 85 |
# print("Time taken: ", time.time() - start_time)
|
| 86 |
-
|
| 87 |
yield (24000, audio_frame.cpu().detach().numpy())
|
| 88 |
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
|
|
|
| 93 |
def main():
|
| 94 |
title = "Tortoise TTS 🐢"
|
| 95 |
description = """
|
|
@@ -101,37 +45,19 @@ def main():
|
|
| 101 |
<br/>
|
| 102 |
"""
|
| 103 |
text = gr.Textbox(
|
| 104 |
-
lines=
|
| 105 |
-
label="Text
|
| 106 |
)
|
| 107 |
-
script = gr.File(label="Upload a text file")
|
| 108 |
|
| 109 |
-
|
| 110 |
-
VOICE_OPTIONS, value="jane_eyre", label="Select voice:", type="value"
|
| 111 |
-
)
|
| 112 |
-
voice_b = gr.Dropdown(
|
| 113 |
-
VOICE_OPTIONS,
|
| 114 |
-
value="disabled",
|
| 115 |
-
label="(Optional) Select second voice:",
|
| 116 |
-
type="value",
|
| 117 |
-
)
|
| 118 |
-
split_by_newline = gr.Radio(
|
| 119 |
-
["Yes", "No"],
|
| 120 |
-
label="Split by newline (If [No], it will automatically try to find relevant splits):",
|
| 121 |
-
type="value",
|
| 122 |
-
value="No",
|
| 123 |
-
)
|
| 124 |
|
| 125 |
-
output_audio = gr.Audio(label="
|
| 126 |
# download_audio = gr.Audio(label="dowanload audio:")
|
| 127 |
interface = gr.Interface(
|
| 128 |
fn=inference,
|
| 129 |
inputs=[
|
| 130 |
text,
|
| 131 |
-
|
| 132 |
-
voice,
|
| 133 |
-
voice_b,
|
| 134 |
-
split_by_newline,
|
| 135 |
],
|
| 136 |
title=title,
|
| 137 |
description=description,
|
|
|
|
| 8 |
from tortoise.utils.text import split_and_recombine_text
|
| 9 |
from tortoise.utils.audio import load_audio, load_voice, load_voices
|
| 10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
def inference(
|
| 13 |
text,
|
| 14 |
+
reference_audio,
|
|
|
|
|
|
|
| 15 |
seed,
|
|
|
|
| 16 |
):
|
| 17 |
+
texts = split_and_recombine_text(text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
start_time = time.time()
|
| 20 |
|
| 21 |
+
all_parts = []
|
| 22 |
for j, text in enumerate(texts):
|
| 23 |
for audio_frame in tts.tts_with_preset(
|
| 24 |
text,
|
| 25 |
+
voice_samples=load_audio(init_audio_file),
|
| 26 |
+
preset="fast",
|
|
|
|
|
|
|
| 27 |
):
|
| 28 |
# print("Time taken: ", time.time() - start_time)
|
| 29 |
+
all_parts.append(audio_frame)
|
| 30 |
yield (24000, audio_frame.cpu().detach().numpy())
|
| 31 |
|
| 32 |
+
wav = torch.cat(all_parts, dim=0).unsqueeze(0)
|
| 33 |
+
print(wav.shape)
|
| 34 |
+
torchaudio.save("output.wav", wav.cpu(), 24000)
|
| 35 |
+
yield (None, gr.make_waveform(audio="output.wav",))
|
| 36 |
+
|
| 37 |
def main():
|
| 38 |
title = "Tortoise TTS 🐢"
|
| 39 |
description = """
|
|
|
|
| 45 |
<br/>
|
| 46 |
"""
|
| 47 |
text = gr.Textbox(
|
| 48 |
+
lines=1,
|
| 49 |
+
label="Text",
|
| 50 |
)
|
|
|
|
| 51 |
|
| 52 |
+
reference_audio = gr.Audio(label="Reference Audio", type="filepath"),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
|
| 54 |
+
output_audio = gr.Audio(label="Audio:")
|
| 55 |
# download_audio = gr.Audio(label="dowanload audio:")
|
| 56 |
interface = gr.Interface(
|
| 57 |
fn=inference,
|
| 58 |
inputs=[
|
| 59 |
text,
|
| 60 |
+
reference_audio,
|
|
|
|
|
|
|
|
|
|
| 61 |
],
|
| 62 |
title=title,
|
| 63 |
description=description,
|