Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -8,23 +8,27 @@ def load_model():
|
|
| 8 |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
| 9 |
return tokenizer, model
|
| 10 |
|
| 11 |
-
# Load
|
| 12 |
-
|
| 13 |
-
tokenizer, model = load_model()
|
| 14 |
|
| 15 |
-
|
| 16 |
-
st.
|
| 17 |
-
st.write("Generate code snippets from natural language prompts!")
|
| 18 |
|
| 19 |
prompt = st.text_area("Enter your coding task:", placeholder="Write a Python function to calculate factorial.")
|
| 20 |
-
max_length = st.slider("
|
| 21 |
|
| 22 |
if st.button("Generate Code"):
|
| 23 |
if prompt.strip():
|
| 24 |
with st.spinner("Generating code..."):
|
| 25 |
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, padding=True)
|
| 26 |
-
outputs = model.generate(inputs.input_ids, max_length=max_length, num_beams=
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
generated_code = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 28 |
-
|
|
|
|
|
|
|
| 29 |
else:
|
| 30 |
st.warning("Please enter a prompt!")
|
|
|
|
| 8 |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
| 9 |
return tokenizer, model
|
| 10 |
|
| 11 |
+
# Load model
|
| 12 |
+
tokenizer, model = load_model()
|
|
|
|
| 13 |
|
| 14 |
+
st.title("Code Generator")
|
| 15 |
+
st.write("Generate code snippets from natural language prompts using CodeT5!")
|
|
|
|
| 16 |
|
| 17 |
prompt = st.text_area("Enter your coding task:", placeholder="Write a Python function to calculate factorial.")
|
| 18 |
+
max_length = st.slider("Maximum length of generated code:", 20, 300, 100)
|
| 19 |
|
| 20 |
if st.button("Generate Code"):
|
| 21 |
if prompt.strip():
|
| 22 |
with st.spinner("Generating code..."):
|
| 23 |
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, padding=True)
|
| 24 |
+
outputs = model.generate(inputs.input_ids, max_length=max_length, num_beams=5, temperature=0.7, early_stopping=True)
|
| 25 |
+
|
| 26 |
+
st.write("### Debugging: Raw Model Output")
|
| 27 |
+
st.json(outputs.tolist()) # Debugging output
|
| 28 |
+
|
| 29 |
generated_code = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 30 |
+
|
| 31 |
+
st.write("### Generated Code:")
|
| 32 |
+
st.code(generated_code, language="python")
|
| 33 |
else:
|
| 34 |
st.warning("Please enter a prompt!")
|