Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# app.py
|
| 2 |
+
import gradio as gr
|
| 3 |
+
from rag import RAGPipeline
|
| 4 |
+
from attack import AdversarialAttackPipeline
|
| 5 |
+
import time
|
| 6 |
+
|
| 7 |
+
# --- 1. Load Models and Pipelines (Singleton Pattern) ---
|
| 8 |
+
# This section runs only ONCE when the application starts up.
|
| 9 |
+
# This is the key to low latency for subsequent user requests.
|
| 10 |
+
print("Starting application setup...")
|
| 11 |
+
start_time = time.time()
|
| 12 |
+
|
| 13 |
+
# Instantiate the RAG pipeline, which will now load from the pre-computed cache
|
| 14 |
+
rag_pipeline = RAGPipeline(
|
| 15 |
+
json_path="calebdata.json",
|
| 16 |
+
defense_model_path="./defense_model",
|
| 17 |
+
cache_dir="cache"
|
| 18 |
+
)
|
| 19 |
+
|
| 20 |
+
# Instantiate the Attack pipeline
|
| 21 |
+
attack_pipeline = AdversarialAttackPipeline(rag_pipeline_instance=rag_pipeline)
|
| 22 |
+
|
| 23 |
+
end_time = time.time()
|
| 24 |
+
print(f"Application setup complete. Model loading took {end_time - start_time:.2f} seconds.")
|
| 25 |
+
|
| 26 |
+
# --- 2. Define the Core Function for Gradio ---
|
| 27 |
+
# This function will be called every time a user clicks "Submit"
|
| 28 |
+
def run_adversarial_test(query, attack_method, perturbation_level):
|
| 29 |
+
"""
|
| 30 |
+
Runs a single attack and returns the results formatted for the Gradio UI.
|
| 31 |
+
"""
|
| 32 |
+
print(f"Received query: '{query}', Method: {attack_method}, Level: {perturbation_level}")
|
| 33 |
+
|
| 34 |
+
# The attack_pipeline object is already loaded in memory
|
| 35 |
+
result = attack_pipeline.run_attack(
|
| 36 |
+
original_query=query,
|
| 37 |
+
perturbation_method=attack_method,
|
| 38 |
+
perturbation_level=perturbation_level
|
| 39 |
+
)
|
| 40 |
+
|
| 41 |
+
# Format the output for Gradio components
|
| 42 |
+
return (
|
| 43 |
+
result["normal_query"],
|
| 44 |
+
result["perturbed_query"],
|
| 45 |
+
result["normal_response"],
|
| 46 |
+
result["perturbed_response"],
|
| 47 |
+
f"Defense Triggered: {result['defense_triggered']} | Reason: {result['reason']}",
|
| 48 |
+
f"Response Similarity: {result['cos_sim']['response_sim']}%",
|
| 49 |
+
f"Adversarial Risk Index (ARI): {result['ari']}"
|
| 50 |
+
)
|
| 51 |
+
|
| 52 |
+
# --- 3. Build the Gradio Interface ---
|
| 53 |
+
with gr.Blocks(theme=gr.themes.Soft(), title="RAG Adversarial Tester") as demo:
|
| 54 |
+
gr.Markdown("# Adversarial Robustness Testing for RAG Systems")
|
| 55 |
+
gr.Markdown(
|
| 56 |
+
"This interface allows you to test the resilience of a RAG pipeline against various adversarial query perturbations. "
|
| 57 |
+
"Enter a query, select an attack method and perturbation level, and observe the impact."
|
| 58 |
+
)
|
| 59 |
+
|
| 60 |
+
with gr.Row():
|
| 61 |
+
with gr.Column(scale=1):
|
| 62 |
+
query_input = gr.Textbox(label="Original Query", placeholder="e.g., Who is the Vice-Chancellor?")
|
| 63 |
+
attack_method_input = gr.Dropdown(
|
| 64 |
+
label="Attack Method",
|
| 65 |
+
choices=["random_deletion", "synonym_replacement", "contextual_word_embedding"],
|
| 66 |
+
value="random_deletion"
|
| 67 |
+
)
|
| 68 |
+
perturbation_level_input = gr.Slider(
|
| 69 |
+
label="Perturbation Level",
|
| 70 |
+
minimum=0, maximum=1,
|
| 71 |
+
step=0.1, value=0.2, # Mapping low/medium/high to a slider
|
| 72 |
+
# Note: The attack.py code will need a slight modification to handle a float level
|
| 73 |
+
# Or, use a dropdown: choices=["low", "medium", "high"]
|
| 74 |
+
)
|
| 75 |
+
submit_btn = gr.Button("Run Attack", variant="primary")
|
| 76 |
+
|
| 77 |
+
with gr.Column(scale=2):
|
| 78 |
+
gr.Markdown("### Attack Results")
|
| 79 |
+
original_query_output = gr.Textbox(label="Original Query (from input)", interactive=False)
|
| 80 |
+
perturbed_query_output = gr.Textbox(label="Adversarial (Perturbed) Query", interactive=False)
|
| 81 |
+
original_response_output = gr.Textbox(label="✅ Normal Response", interactive=False)
|
| 82 |
+
perturbed_response_output = gr.Textbox(label="🔴 Perturbed Response", interactive=False)
|
| 83 |
+
|
| 84 |
+
with gr.Row():
|
| 85 |
+
defense_status_output = gr.Textbox(label="Defense Status", scale=2)
|
| 86 |
+
response_sim_output = gr.Textbox(label="Response Similarity")
|
| 87 |
+
ari_output = gr.Textbox(label="ARI Score")
|
| 88 |
+
|
| 89 |
+
# Connect the button to the function
|
| 90 |
+
submit_btn.click(
|
| 91 |
+
fn=run_adversarial_test,
|
| 92 |
+
inputs=[query_input, attack_method_input, perturbation_level_input],
|
| 93 |
+
outputs=[
|
| 94 |
+
original_query_output,
|
| 95 |
+
perturbed_query_output,
|
| 96 |
+
original_response_output,
|
| 97 |
+
perturbed_response_output,
|
| 98 |
+
defense_status_output,
|
| 99 |
+
response_sim_output,
|
| 100 |
+
ari_output
|
| 101 |
+
]
|
| 102 |
+
)
|
| 103 |
+
|
| 104 |
+
# Launch the interface
|
| 105 |
+
if __name__ == "__main__":
|
| 106 |
+
demo.launch()
|