Spaces:
Runtime error
Runtime error
Commit
·
ceccbee
1
Parent(s):
cd181fe
Fix
Browse files- app.py +1 -39
- src/Inference.py +43 -0
- src/SemanticSearch.py +10 -2
app.py
CHANGED
|
@@ -1,13 +1,11 @@
|
|
| 1 |
import os
|
| 2 |
import json
|
| 3 |
|
| 4 |
-
import spaces
|
| 5 |
import gradio
|
| 6 |
|
| 7 |
import numpy
|
| 8 |
import pandas
|
| 9 |
|
| 10 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 11 |
|
| 12 |
import pyparseit
|
| 13 |
|
|
@@ -35,50 +33,14 @@ model_options = [
|
|
| 35 |
|
| 36 |
|
| 37 |
from src.SemanticSearch import SemanticSearch
|
|
|
|
| 38 |
|
| 39 |
extractor = SemanticSearch()
|
| 40 |
extractor.load_ne_from_kg(SPARQL_ENDPOINT)
|
| 41 |
extractor.build_vector_db()
|
| 42 |
extractor.load_vector_db()
|
| 43 |
|
| 44 |
-
@spaces.GPU
|
| 45 |
-
def model_completion(messages, model_name, model_temperature, model_thinking):
|
| 46 |
|
| 47 |
-
# load the tokenizer and the model
|
| 48 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 49 |
-
model = AutoModelForCausalLM.from_pretrained(
|
| 50 |
-
model_name,
|
| 51 |
-
torch_dtype="auto",
|
| 52 |
-
device_map="auto"
|
| 53 |
-
)
|
| 54 |
-
|
| 55 |
-
text = tokenizer.apply_chat_template(
|
| 56 |
-
messages,
|
| 57 |
-
tokenize=False,
|
| 58 |
-
add_generation_prompt=True,
|
| 59 |
-
enable_thinking=model_thinking
|
| 60 |
-
)
|
| 61 |
-
|
| 62 |
-
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
| 63 |
-
|
| 64 |
-
sample = True
|
| 65 |
-
|
| 66 |
-
if model_temperature == 0:
|
| 67 |
-
sample = False
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
# conduct text completion
|
| 71 |
-
generated_ids = model.generate(
|
| 72 |
-
**model_inputs,
|
| 73 |
-
max_new_tokens=4096,
|
| 74 |
-
do_sample=sample,
|
| 75 |
-
temperature=model_temperature
|
| 76 |
-
)
|
| 77 |
-
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
|
| 78 |
-
|
| 79 |
-
content = tokenizer.decode(output_ids, skip_special_tokens=True).strip("\n")
|
| 80 |
-
|
| 81 |
-
return content
|
| 82 |
|
| 83 |
|
| 84 |
def sparql_json_to_df(sparql_json):
|
|
|
|
| 1 |
import os
|
| 2 |
import json
|
| 3 |
|
|
|
|
| 4 |
import gradio
|
| 5 |
|
| 6 |
import numpy
|
| 7 |
import pandas
|
| 8 |
|
|
|
|
| 9 |
|
| 10 |
import pyparseit
|
| 11 |
|
|
|
|
| 33 |
|
| 34 |
|
| 35 |
from src.SemanticSearch import SemanticSearch
|
| 36 |
+
from src.Inference import model_completion
|
| 37 |
|
| 38 |
extractor = SemanticSearch()
|
| 39 |
extractor.load_ne_from_kg(SPARQL_ENDPOINT)
|
| 40 |
extractor.build_vector_db()
|
| 41 |
extractor.load_vector_db()
|
| 42 |
|
|
|
|
|
|
|
| 43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
|
| 45 |
|
| 46 |
def sparql_json_to_df(sparql_json):
|
src/Inference.py
CHANGED
|
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import spaces
|
| 2 |
+
|
| 3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
@spaces.GPU
|
| 7 |
+
def model_completion(messages, model_name, model_temperature, model_thinking):
|
| 8 |
+
|
| 9 |
+
# load the tokenizer and the model
|
| 10 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 11 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 12 |
+
model_name,
|
| 13 |
+
torch_dtype="auto",
|
| 14 |
+
device_map="auto"
|
| 15 |
+
)
|
| 16 |
+
|
| 17 |
+
text = tokenizer.apply_chat_template(
|
| 18 |
+
messages,
|
| 19 |
+
tokenize=False,
|
| 20 |
+
add_generation_prompt=True,
|
| 21 |
+
enable_thinking=model_thinking
|
| 22 |
+
)
|
| 23 |
+
|
| 24 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
| 25 |
+
|
| 26 |
+
sample = True
|
| 27 |
+
|
| 28 |
+
if model_temperature == 0:
|
| 29 |
+
sample = False
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
# conduct text completion
|
| 33 |
+
generated_ids = model.generate(
|
| 34 |
+
**model_inputs,
|
| 35 |
+
max_new_tokens=4096,
|
| 36 |
+
do_sample=sample,
|
| 37 |
+
temperature=model_temperature
|
| 38 |
+
)
|
| 39 |
+
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
|
| 40 |
+
|
| 41 |
+
content = tokenizer.decode(output_ids, skip_special_tokens=True).strip("\n")
|
| 42 |
+
|
| 43 |
+
return content
|
src/SemanticSearch.py
CHANGED
|
@@ -30,9 +30,17 @@ WHERE {
|
|
| 30 |
#FILTER(lang(?ne_label) = "en" || lang(?ne_label) = "")
|
| 31 |
#FILTER(lang(?class_label) = "en" || lang(?class_label) = "")
|
| 32 |
}
|
| 33 |
-
LIMIT 128
|
| 34 |
"""
|
| 35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
class SemanticSearch:
|
| 37 |
|
| 38 |
def __init__(self, embeddings_model="BAAI/bge-base-en-v1.5", reranking_model="BAAI/bge-reranker-v2-m3"):
|
|
@@ -174,7 +182,7 @@ class SemanticSearch:
|
|
| 174 |
|
| 175 |
print("Got ", len(documents), "sentences")
|
| 176 |
|
| 177 |
-
for sentences_batch in tqdm.tqdm(list(
|
| 178 |
|
| 179 |
embeddings += self.get_text_embeddings_local(sentences_batch)
|
| 180 |
|
|
|
|
| 30 |
#FILTER(lang(?ne_label) = "en" || lang(?ne_label) = "")
|
| 31 |
#FILTER(lang(?class_label) = "en" || lang(?class_label) = "")
|
| 32 |
}
|
|
|
|
| 33 |
"""
|
| 34 |
|
| 35 |
+
# HF seems to use 3.10!
|
| 36 |
+
def batched(iterable, n):
|
| 37 |
+
if n < 1:
|
| 38 |
+
raise ValueError('n must be at least one')
|
| 39 |
+
it = iter(iterable)
|
| 40 |
+
|
| 41 |
+
while batch := tuple(itertools.islice(it, n)):
|
| 42 |
+
yield batch
|
| 43 |
+
|
| 44 |
class SemanticSearch:
|
| 45 |
|
| 46 |
def __init__(self, embeddings_model="BAAI/bge-base-en-v1.5", reranking_model="BAAI/bge-reranker-v2-m3"):
|
|
|
|
| 182 |
|
| 183 |
print("Got ", len(documents), "sentences")
|
| 184 |
|
| 185 |
+
for sentences_batch in tqdm.tqdm(list(batched(documents, 512)), desc="Generating embeddings"):
|
| 186 |
|
| 187 |
embeddings += self.get_text_embeddings_local(sentences_batch)
|
| 188 |
|