Spaces:
Sleeping
Sleeping
File size: 18,209 Bytes
19902b0 e302e44 9437058 aff672c 6297c92 8cd5464 e64968d e85c337 e64968d eccf59c e302e44 ef22374 6297c92 e302e44 aff672c 19902b0 e64968d 19902b0 e64968d 19902b0 e64968d 19902b0 8cd5464 19902b0 9437058 8cd5464 e64968d 36b812a 19902b0 e64968d 19902b0 36b812a 19902b0 8cd5464 e64968d 8cd5464 e64968d 8cd5464 19902b0 e9890b3 36b812a e9890b3 9437058 08d23ba 8cd5464 9437058 8cd5464 e64968d 9437058 8cd5464 9437058 8cd5464 9437058 8cd5464 9437058 8cd5464 e64968d 8cd5464 e9890b3 e64968d 9437058 6297c92 8cd5464 6297c92 8cd5464 6297c92 8cd5464 6297c92 aff672c 8cd5464 aff672c 8cd5464 aff672c 8cd5464 aff672c 8cd5464 aff672c 8cd5464 aff672c 8cd5464 aff672c 8cd5464 aff672c e64968d a0135da e85c337 a0135da e85c337 e64968d e85c337 a0135da e85c337 a0135da e85c337 a0135da e85c337 a0135da e64968d e85c337 e64968d a0135da eccf59c a0135da eccf59c a0135da eccf59c e64968d e85c337 a0135da e85c337 a0135da e85c337 a0135da e85c337 a0135da e85c337 a0135da e64968d a0135da e64968d a0135da e64968d eccf59c e64968d eccf59c aff672c a0135da 8cd5464 08d23ba 8cd5464 aff672c 08d23ba 8cd5464 36b812a 8cd5464 9437058 e64968d 8cd5464 e64968d 9437058 8cd5464 9437058 8cd5464 9437058 8cd5464 36b812a 8cd5464 6297c92 8cd5464 6297c92 8cd5464 e64968d 8cd5464 e64968d 6297c92 51a00f3 8cd5464 4c6bb96 8cd5464 4c6bb96 8cd5464 4c6bb96 8cd5464 4c6bb96 8cd5464 500fedc 4c6bb96 500fedc e64968d 710118c 4c6bb96 e64968d 8cd5464 4c6bb96 8cd5464 e302e44 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 |
import re
from src.ontology_adapter import ESGOntologyAdapter
import gradio as gr
from collections import Counter, defaultdict
from rdflib import Graph, Literal, Namespace, URIRef
from rdflib.namespace import RDF, RDFS
from keybert import KeyBERT
import pandas as pd
import plotly.express as px
import networkx as nx
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import io
from PIL import Image
# --- Model Configuration ---
# To use a fine-tuned model, change this path to the directory where your model is saved.
# For example: "./fine_tuned_esg_model".
# A training script template (train_finetune.py) is provided to help you create this model.
FINE_TUNED_MODEL_PATH = "all-MiniLM-L6-v2" # <-- REPLACE WITH YOUR FINE-TUNED MODEL PATH
try:
# Attempt to load the fine-tuned model
adapter = ESGOntologyAdapter(
"ontology/esg_ontology.owl",
model_name_or_path=FINE_TUNED_MODEL_PATH
)
except Exception as e:
print(f"Warning: Could not load fine-tuned model from '{FINE_TUNED_MODEL_PATH}'. Error: {e}")
print("Falling back to default pre-trained model 'all-MiniLM-L6-v2'.")
# Fallback to the default model if the fine-tuned one isn't available
adapter = ESGOntologyAdapter(
"ontology/esg_ontology.owl",
model_name_or_path="all-MiniLM-L6-v2"
)
kw_model = KeyBERT()
# Define namespaces for our knowledge graph
ESG = Namespace("http://example.org/esg-ontology/")
DOC = Namespace("http://example.org/documents/")
def detect_sections(text):
"""Detects and categorizes sections into 'promise' or 'performance'."""
sections = []
# Split by common section headers
# This pattern is a simple heuristic and can be improved
pattern = r'\n\s*(?=[A-Z][a-zA-Z\s&]{5,})\s*\n'
parts = re.split(pattern, text)
for part in parts:
if not part.strip():
continue
lines = part.strip().split('\n')
title = lines[0].strip()
content = ' '.join(lines[1:])
category = 'unknown'
if any(kw in title.lower() for kw in ['strategy', 'goals', 'commitment', 'outlook', 'forward-looking']):
category = 'promise'
elif any(kw in title.lower() for kw in ['results', 'performance', 'data', 'review', 'achievements']):
category = 'performance'
sections.append({"title": title, "content": content, "category": category})
return sections
def analyze_single_document(text, doc_name="Document"):
"""Analyzes a single document and returns aspect-level sentiment and other metrics."""
detected_sections = detect_sections(text)
aspect_sentiments = defaultdict(list)
aspect_confidence = defaultdict(list)
optimism_bias_scores = defaultdict(list)
promise_performance_sentiments = defaultdict(lambda: defaultdict(list)) # New: for promise/performance analysis
for section in detected_sections:
title = section['title']
content = section['content']
category = section['category'] # New: section category
if not content.strip():
continue
# Section-aware weighting (Bias Analysis)
# Increase weight for forward-looking/promise sections, decrease for results
tone_weight = 1.0
if category == 'promise':
tone_weight = 1.2 # Higher optimism bias likely
elif category == 'performance':
tone_weight = 0.8 # Lower optimism bias likely
mapping = adapter.map_term(content)
if mapping['matches']:
sentiment = mapping['sentiment']
for match in mapping['matches']:
aspect = match['mapped_to']
score = match['similarity']
aspect_sentiments[aspect].append(sentiment)
aspect_confidence[aspect].append(score)
# Calculate a simple optimism score
if sentiment == 'positive':
optimism_bias_scores[aspect].append(tone_weight * score)
elif sentiment == 'negative':
optimism_bias_scores[aspect].append(-1 * score) # Negative sentiment counts against optimism
# New: Store sentiment for promise/performance analysis
if category != 'unknown':
promise_performance_sentiments[category][sentiment].append(score)
# Aggregate results
aggregated_sentiments = {}
avg_confidence = {}
final_optimism_bias = {}
for aspect, sentiments in aspect_sentiments.items():
if sentiments:
# Sentiment: most common
aggregated_sentiments[aspect] = Counter(sentiments).most_common(1)[0][0]
# Confidence: average score for the aspect
avg_confidence[aspect] = sum(aspect_confidence[aspect]) / len(aspect_confidence[aspect])
# Optimism Bias: average of the weighted scores
if aspect in optimism_bias_scores:
final_optimism_bias[aspect] = sum(optimism_bias_scores[aspect]) / len(optimism_bias_scores[aspect])
else:
final_optimism_bias[aspect] = 0
# New: Aggregate promise/performance sentiments
promise_performance_data = []
for category, sentiments_by_type in promise_performance_sentiments.items():
for sentiment_type, scores in sentiments_by_type.items():
if scores:
promise_performance_data.append({
'Document': doc_name,
'Category': category.capitalize(),
'Sentiment': sentiment_type,
'Average Confidence': sum(scores) / len(scores)
})
# Create a DataFrame for visualization
df = pd.DataFrame({
'Aspect': [a.replace('_', ' ').title() for a in aggregated_sentiments.keys()],
'Sentiment': list(aggregated_sentiments.values()),
'Confidence': [avg_confidence.get(a, 0) for a in aggregated_sentiments.keys()],
'Optimism Bias': [final_optimism_bias.get(a, 0) for a in aggregated_sentiments.keys()],
'Document': doc_name
})
return aggregated_sentiments, df, pd.DataFrame(promise_performance_data) # New: return promise/performance DataFrame
def discover_new_aspects(text, existing_aspects):
"""Discovers new potential ESG aspects from text using KeyBERT."""
text = text.replace('\n', ' ')
keywords = kw_model.extract_keywords(
text, keyphrase_ngram_range=(1, 3), stop_words='english',
use_mmr=True, diversity=0.7, top_n=10
)
suggested_aspects = []
existing_aspect_labels = {aspect.replace('_', ' ') for aspect in existing_aspects}
for keyword, score in keywords:
if keyword.lower() not in existing_aspect_labels and len(keyword) > 5:
suggested_aspects.append(f"- **{keyword.title()}** (Confidence: {score:.2f})")
return "\n".join(suggested_aspects) if suggested_aspects else "No new aspects discovered."
def generate_knowledge_graph(sentiments1, sentiments2):
"""Generates an RDF knowledge graph from sentiment analysis results."""
g = Graph()
g.bind("esg", ESG); g.bind("doc", DOC); g.bind("rdf", RDF); g.bind("rdfs", RDFS)
# Document 1
doc1_uri = DOC['report_1']
g.add((doc1_uri, RDF.type, ESG.Document)); g.add((doc1_uri, RDFS.label, Literal("Document 1")))
for aspect, sentiment in sentiments1.items():
aspect_uri = ESG[aspect]
g.add((doc1_uri, ESG.hasAspect, aspect_uri)); g.add((aspect_uri, RDF.type, ESG.Aspect))
g.add((aspect_uri, RDFS.label, Literal(aspect.replace('_', ' ').title())))
g.add((aspect_uri, ESG.hasSentiment, Literal(sentiment)))
# Document 2
doc2_uri = DOC['report_2']
g.add((doc2_uri, RDF.type, ESG.Document)); g.add((doc2_uri, RDFS.label, Literal("Document 2")))
for aspect, sentiment in sentiments2.items():
aspect_uri = ESG[aspect]
g.add((doc2_uri, ESG.hasAspect, aspect_uri)); g.add((aspect_uri, RDF.type, ESG.Aspect))
g.add((aspect_uri, RDFS.label, Literal(aspect.replace('_', ' ').title())))
g.add((aspect_uri, ESG.hasSentiment, Literal(sentiment)))
output_path = "esg_knowledge_graph.ttl"
g.serialize(destination=output_path, format='turtle')
# Generate visualization
graph_image = visualize_knowledge_graph(g)
return output_path, graph_image
def visualize_knowledge_graph(g):
"""Creates a visual representation of the knowledge graph."""
nx_graph = nx.DiGraph()
node_types = {}
node_sentiments = {}
def get_label_from_uri(uri):
"""Gets a shortened, readable name from a URI."""
if '#' in str(uri):
return str(uri).split('#')[-1].replace('_', ' ').title()
return str(uri).split('/')[-1].replace('_', ' ').title()
# First pass: identify node types and sentiments
for s, p, o in g:
if isinstance(s, URIRef):
s_label = get_label_from_uri(s)
if p == RDF.type and isinstance(o, URIRef):
o_label = get_label_from_uri(o)
node_types[s_label] = o_label
elif p == ESG.hasSentiment and isinstance(o, Literal):
node_sentiments[s_label] = str(o)
# Second pass: build the graph structure
for s, p, o in g:
if p in [RDF.type, RDFS.label, ESG.hasSentiment]:
continue
if isinstance(s, URIRef) and isinstance(o, URIRef):
s_label = get_label_from_uri(s)
o_label = get_label_from_uri(o)
p_label = get_label_from_uri(p)
nx_graph.add_edge(s_label, o_label, label=p_label)
# Handle empty graph case
if not nx_graph.nodes():
plt.figure(figsize=(12, 8))
plt.text(0.5, 0.5, "No knowledge graph to display.\\n(No aspects were detected in the documents)",
ha='center', va='center', fontsize=14, color='gray')
buf = io.BytesIO()
plt.savefig(buf, format='png', bbox_inches='tight')
buf.seek(0)
img = Image.open(buf)
plt.close()
return img
# Create the visualization
plt.figure(figsize=(16, 12))
pos = nx.spring_layout(nx_graph, k=1.5, iterations=50)
# Assign colors based on type and sentiment
node_colors = []
for node in nx_graph.nodes():
node_type = node_types.get(node)
sentiment = node_sentiments.get(node)
if node_type == 'Document':
node_colors.append('skyblue')
elif node_type == 'Aspect':
if sentiment == 'positive':
node_colors.append('lightgreen')
elif sentiment == 'negative':
node_colors.append('#ff9999') # light red
else: # neutral or other
node_colors.append('lightyellow')
else:
node_colors.append('lightgray')
nx.draw(nx_graph, pos, with_labels=True, node_size=3500, node_color=node_colors,
font_size=10, font_weight='bold', width=1.5, edge_color='darkgray',
arrows=True, arrowstyle='->', arrowsize=20)
edge_labels = nx.get_edge_attributes(nx_graph, 'label')
nx.draw_networkx_edge_labels(nx_graph, pos, edge_labels=edge_labels, font_color='firebrick', font_size=9)
plt.title("Knowledge Graph of ESG Aspects", size=18)
buf = io.BytesIO()
plt.savefig(buf, format='png', bbox_inches='tight')
buf.seek(0)
img = Image.open(buf)
plt.close()
return img
def create_ontology_tree_view():
"""Creates a markdown representation of the ontology hierarchy."""
tree = "**ESG Ontology Structure**\n\n"
parents = adapter.get_direct_parents()
children = defaultdict(list)
all_nodes = set(parents.keys()) | set(parents.values())
for child, parent in parents.items():
children[parent].append(child)
def build_tree(node, prefix=""):
nonlocal tree
tree += f"{prefix}- **{node.replace('_', ' ').title()}**\n"
if node in children:
for child in sorted(children[node]):
build_tree(child, prefix + " ")
# Find root nodes (pillars or classes not listed as children)
root_nodes = sorted([n for n in all_nodes if n not in parents.keys() and n in children.keys()])
for root in root_nodes:
build_tree(root)
return tree
def create_promise_performance_plot(df_promise_performance):
"""Creates a bar chart visualizing promise vs. performance sentiment."""
if df_promise_performance.empty:
return None
fig = px.bar(df_promise_performance, x='Category', y='Average Confidence', color='Sentiment',
facet_col='Document', barmode='group',
color_discrete_map={'positive': '#2ca02c', 'negative': '#d62728', 'neutral': '#7f7f7f'},
title="Promise vs. Performance Sentiment Analysis")
return fig
def analyze_and_compare(text1, text2):
"""Main function to drive the analysis and comparison for the dashboard."""
# Analyze both documents
sentiments1, df1, pp_df1 = analyze_single_document(text1, "Document 1")
sentiments2, df2, pp_df2 = analyze_single_document(text2, "Document 2")
# --- Generate Comparison Reports ---
# 1. Cross-Document Consistency Analysis
consistency_report = "**Sentiment Drift Analysis**\n\n"
all_aspects = sorted(list(set(sentiments1.keys()) | set(sentiments2.keys())))
found_drift = False
for aspect in all_aspects:
s1 = sentiments1.get(aspect); s2 = sentiments2.get(aspect)
name = aspect.replace('_', ' ').title()
if s1 and s2 and s1 != s2:
consistency_report += f"🟡 **Drift in '{name}'**: `{s1.title()}` ⟶ `{s2.title()}`\n"
found_drift = True
elif s1 and not s2:
consistency_report += f"⚪️ **'{name}'** only in Document 1 (Sentiment: {s1.title()})\n"
elif not s1 and s2:
consistency_report += f"⚪️ **'{name}'** only in Document 2 (Sentiment: {s2.title()})\n"
if not found_drift and any(all_aspects):
consistency_report += "✅ No sentiment contradictions detected for common aspects.\n"
elif not any(all_aspects):
consistency_report = "No aspects detected in either document."
# 2. Weakly Supervised Aspect Discovery
all_text = text1 + "\n\n" + text2
existing_aspects = set(sentiments1.keys()) | set(sentiments2.keys())
suggestions_report = "**Suggested New Aspects**\n\n" + discover_new_aspects(all_text, existing_aspects)
# --- Create Visualizations ---
combined_df = pd.concat([df1, df2])
# Sentiment Distribution Plot
sentiment_fig = None
if not combined_df.empty:
sentiment_counts = combined_df.groupby(['Document', 'Sentiment']).size().reset_index(name='Count')
sentiment_fig = px.bar(sentiment_counts, x='Document', y='Count', color='Sentiment',
title="Sentiment Distribution Across Documents",
color_discrete_map={'positive': '#2ca02c', 'negative': '#d62728', 'neutral': '#7f7f7f'})
# Bias & Confidence Plot
bias_fig = None
if not combined_df.empty:
bias_fig = px.scatter(combined_df, x='Confidence', y='Optimism Bias', color='Aspect',
size=abs(combined_df['Optimism Bias']), hover_data=['Document'],
title="Optimism Bias vs. Mapping Confidence")
bias_fig.add_hline(y=0, line_dash="dot", line_color="grey")
# New: Promise vs. Performance Plot
combined_pp_df = pd.concat([pp_df1, pp_df2])
promise_performance_fig = create_promise_performance_plot(combined_pp_df)
# Generate and save the knowledge graph
kg_file_path, kg_image = generate_knowledge_graph(sentiments1, sentiments2)
return consistency_report, suggestions_report, sentiment_fig, bias_fig, promise_performance_fig, kg_file_path, kg_image
# --- Gradio Interface ---
with gr.Blocks(theme=gr.themes.Soft(), title="ESG Interpretability Dashboard") as iface:
gr.Markdown("# 🧩 ESG Interpretability Dashboard & Bias Analysis")
with gr.Row():
with gr.Column(scale=1):
text1 = gr.Textbox(label="Input ESG Report Text 1", lines=20)
with gr.Column(scale=1):
text2 = gr.Textbox(label="Input ESG Report Text 2", lines=20)
analyze_btn = gr.Button("Analyze & Compare Documents", variant="primary")
with gr.Tabs():
with gr.TabItem("📊 Analysis & Visualizations"):
with gr.Row():
with gr.Column():
sentiment_plot = gr.Plot(label="Sentiment Distribution")
with gr.Column():
bias_plot = gr.Plot(label="Bias & Confidence Analysis")
with gr.Row():
promise_performance_plot = gr.Plot(label="Promise vs. Performance Sentiment")
with gr.Row():
with gr.Column():
consistency_output = gr.Markdown(label="Cross-Document Analysis")
with gr.Column():
suggestions_output = gr.Markdown(label="Weak Supervision Suggestions")
with gr.TabItem("🌳 Ontology & Knowledge Graph"):
with gr.Row():
with gr.Column(scale=1):
ontology_tree = gr.Markdown(
value=create_ontology_tree_view(),
label="ESG Ontology Hierarchy"
)
with gr.Column(scale=2):
with gr.Group():
kg_plot = gr.Image(label="Knowledge Graph Visualization")
with gr.Row():
kg_output = gr.File(label="Download Knowledge Graph (RDF/Turtle)")
analyze_btn.click(
fn=analyze_and_compare,
inputs=[text1, text2],
outputs=[
consistency_output,
suggestions_output,
sentiment_plot,
bias_plot,
promise_performance_plot,
kg_output,
kg_plot
]
)
iface.launch() |