esgdata / xai_utils.py
darisdzakwanhoesien2
Add XAI
7014ae0
import shap
import torch
import numpy as np
import matplotlib.pyplot as plt
from transformers import AutoModelForSequenceClassification, AutoTokenizer
def get_token_importance(model, tokenizer, text):
"""
Calculates token importance using SHAP.
"""
# Placeholder implementation
return {"token_importance": "Not yet implemented."}
def get_attention_maps(model, tokenizer, text):
"""
Generates attention heatmaps for a given text.
"""
# Placeholder implementation
return {"attention_maps": "Not yet implemented."}
def get_aspect_wise_explanation(shap_values, aspects):
"""
Aggregates SHAP values by ontology aspect.
"""
# Placeholder implementation
return {"aspect_wise_explanation": "Not yet implemented."}
def get_confidence_calibration_diagram(model, texts, labels):
"""
Creates a confidence calibration diagram.
"""
# Placeholder implementation
return {"confidence_calibration": "Not yet implemented."}
def run_xai_analysis(model_path, text1, text2):
"""
Runs the full XAI analysis pipeline.
"""
# tokenizer = AutoTokenizer.from_pretrained(model_path)
# model = AutoModelForSequenceClassification.from_pretrained(model_path)
# token_importance = get_token_importance(model, tokenizer, text1)
# attention_maps = get_attention_maps(model, tokenizer, text1)
# For now, returning placeholders
analysis_results = {
"token_importance": "Not yet implemented",
"attention_maps": "Not yet implemented",
"aspect_wise_explanation": "Not yet implemented.",
"confidence_calibration": "Not yet implemented."
}
return analysis_results