Spaces:
Sleeping
Sleeping
| import shap | |
| import torch | |
| import numpy as np | |
| import matplotlib.pyplot as plt | |
| from transformers import AutoModelForSequenceClassification, AutoTokenizer | |
| def get_token_importance(model, tokenizer, text): | |
| """ | |
| Calculates token importance using SHAP. | |
| """ | |
| # Placeholder implementation | |
| return {"token_importance": "Not yet implemented."} | |
| def get_attention_maps(model, tokenizer, text): | |
| """ | |
| Generates attention heatmaps for a given text. | |
| """ | |
| # Placeholder implementation | |
| return {"attention_maps": "Not yet implemented."} | |
| def get_aspect_wise_explanation(shap_values, aspects): | |
| """ | |
| Aggregates SHAP values by ontology aspect. | |
| """ | |
| # Placeholder implementation | |
| return {"aspect_wise_explanation": "Not yet implemented."} | |
| def get_confidence_calibration_diagram(model, texts, labels): | |
| """ | |
| Creates a confidence calibration diagram. | |
| """ | |
| # Placeholder implementation | |
| return {"confidence_calibration": "Not yet implemented."} | |
| def run_xai_analysis(model_path, text1, text2): | |
| """ | |
| Runs the full XAI analysis pipeline. | |
| """ | |
| # tokenizer = AutoTokenizer.from_pretrained(model_path) | |
| # model = AutoModelForSequenceClassification.from_pretrained(model_path) | |
| # token_importance = get_token_importance(model, tokenizer, text1) | |
| # attention_maps = get_attention_maps(model, tokenizer, text1) | |
| # For now, returning placeholders | |
| analysis_results = { | |
| "token_importance": "Not yet implemented", | |
| "attention_maps": "Not yet implemented", | |
| "aspect_wise_explanation": "Not yet implemented.", | |
| "confidence_calibration": "Not yet implemented." | |
| } | |
| return analysis_results |