dbaranchuk commited on
Commit
0816484
·
verified ·
1 Parent(s): c4c01ef

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +125 -0
app.py ADDED
@@ -0,0 +1,125 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import spaces
2
+ import gradio as gr
3
+ import numpy as np
4
+ import random
5
+ import functools
6
+ import os
7
+ import torch
8
+ from diffusers import FluxPipeline
9
+ from peft import LoraConfig, get_peft_model, PeftModel
10
+
11
+ huggingface_token = os.getenv("HF_TOKEN")
12
+
13
+ pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev",
14
+ torch_dtype=torch.float16,
15
+ token=huggingface_token,
16
+ custom_pipeline='quickjkee/swd_pipeline_flux').to('cuda')
17
+ distill_check = 'yresearch/swd_flux'
18
+ pipe.transformer = PeftModel.from_pretrained(
19
+ pipe.transformer,
20
+ distill_check,
21
+ )
22
+
23
+
24
+ MAX_SEED = np.iinfo(np.int32).max
25
+ MAX_IMAGE_SIZE = 1024
26
+
27
+
28
+ @spaces.GPU()
29
+ def infer(prompt, seed, randomize_seed):
30
+
31
+ if randomize_seed:
32
+ seed = random.randint(0, MAX_SEED)
33
+
34
+ generator = torch.Generator().manual_seed(seed)
35
+ sigmas = [1.0000, 0.8956, 0.7363, 0.6007, 0.0000]
36
+ scales = [64, 80, 96, 128]
37
+
38
+ image = pipe(
39
+ prompt=prompt,
40
+ height=int(scales[0] * 8),
41
+ width=int(scales[0] * 8),
42
+ scales=scales,
43
+ sigmas=sigmas,
44
+ timesteps=torch.tensor(sigmas[:-1]).to('cuda') * 1000,
45
+ guidance_scale=4.5,
46
+ max_sequence_length=512,
47
+ generator=torch.Generator("cpu").manual_seed(0)
48
+ ).images[0]
49
+
50
+ return image
51
+
52
+
53
+ examples = [
54
+ "3d digital art of an adorable ghost, holding a heart shaped pumpkin, Halloween, super cute, spooky haunted house background",
55
+ 'Long-exposure night photography of a starry sky over a mountain range, with light trails.',
56
+ "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
57
+ "A gold astronaut meditating in a lush green forest by a lake",
58
+ "A group of friends sitting around a campfire."
59
+ ]
60
+
61
+ css = """
62
+ #col-container {
63
+ margin: 0 auto;
64
+ max-width: 520px;
65
+ }
66
+ """
67
+
68
+ if torch.cuda.is_available():
69
+ power_device = "GPU"
70
+ else:
71
+ power_device = "CPU"
72
+
73
+ with gr.Blocks(css=css) as demo:
74
+ with gr.Column(elem_id="col-container"):
75
+ gr.Markdown(
76
+ f"""
77
+ # ⚡ Scale-wise Distillation ⚡
78
+ # ⚡ Image Generation with 6-step SwD ⚡
79
+ This is a demo of [Scale-wise Distillation](https://yandex-research.github.io/swd/),
80
+ a diffusion distillation method proposed in [Scale-wise Distillation of Diffusion Models](https://arxiv.org/abs/2503.16397)
81
+ by [Yandex Research](https://github.com/yandex-research).
82
+ Currently running on {power_device}.
83
+ """
84
+ )
85
+ gr.Markdown(
86
+ "If you enjoy the space, feel free to give a ⭐ to the <a href='https://github.com/yandex-research/swd' target='_blank'>Github Repo</a>. [![GitHub Stars](https://img.shields.io/github/stars/yandex-research/invertible-cd?style=social)](https://github.com/yandex-research/invertible-cd)"
87
+ )
88
+
89
+ with gr.Row():
90
+ prompt = gr.Text(
91
+ label="Prompt",
92
+ show_label=False,
93
+ max_lines=1,
94
+ placeholder="Enter your prompt",
95
+ container=False,
96
+ )
97
+
98
+ run_button = gr.Button("Run", scale=0)
99
+
100
+ result = gr.Image(label="Result", show_label=False)
101
+
102
+ with gr.Accordion("Advanced Settings", open=False):
103
+ seed = gr.Slider(
104
+ label="Seed",
105
+ minimum=0,
106
+ maximum=MAX_SEED,
107
+ step=1,
108
+ value=0,
109
+ )
110
+
111
+ randomize_seed = gr.Checkbox(label="Randomize seed", value=False)
112
+
113
+
114
+ gr.Examples(
115
+ examples=examples,
116
+ inputs=[prompt],
117
+ cache_examples=False
118
+ )
119
+ run_button.click(
120
+ fn=infer,
121
+ inputs=[prompt, seed, randomize_seed],
122
+ outputs=[result]
123
+ )
124
+
125
+ demo.queue().launch(share=False)