Spaces:
Running
Running
| import os.path | |
| import re | |
| from typing import List, Tuple | |
| from hfutils.operate import get_hf_fs | |
| from hfutils.utils import hf_fs_path, parse_hf_fs_path | |
| from imgutils.data import ImageTyping | |
| from imgutils.detect import detect_person | |
| from .base import ObjectDetection | |
| _VERSIONS = { | |
| '': 'v0', | |
| 'plus_': 'v1', | |
| 'plus_v1.1_': 'v1.1', | |
| } | |
| def _parse_model_name(model_name: str): | |
| matching = re.fullmatch(r'^person_detect_(?P<content>[\s\S]+?)best_(?P<level>[\s\S]+?)$', model_name) | |
| return _VERSIONS[matching.group('content')], matching.group('level') | |
| class PersonDetection(ObjectDetection): | |
| def __init__(self): | |
| self.repo_id = 'deepghs/imgutils-models' | |
| def _get_default_model(self) -> str: | |
| return 'person_detect_plus_v1.1_best_m' | |
| def _list_models(self) -> List[str]: | |
| hf_fs = get_hf_fs() | |
| return [ | |
| os.path.splitext(os.path.basename(parse_hf_fs_path(path).filename))[0] | |
| for path in hf_fs.glob(hf_fs_path( | |
| repo_id=self.repo_id, | |
| repo_type='model', | |
| filename='person_detect/*.onnx', | |
| )) | |
| ] | |
| def _get_default_iou_and_score(self, model_name: str) -> Tuple[float, float]: | |
| return 0.5, 0.3 | |
| def _get_labels(self, model_name: str) -> List[str]: | |
| return ['person'] | |
| def detect(self, image: ImageTyping, model_name: str, | |
| iou_threshold: float = 0.7, score_threshold: float = 0.25) -> \ | |
| List[Tuple[Tuple[float, float, float, float], str, float]]: | |
| version, level = _parse_model_name(model_name) | |
| return detect_person(image=image, level=level, version=version, | |
| iou_threshold=iou_threshold, conf_threshold=score_threshold) | |