Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,27 +1,32 @@
|
|
| 1 |
from transformers import AutoModel, AutoTokenizer
|
| 2 |
import gradio as gr
|
| 3 |
import json
|
| 4 |
-
model_path = 'THUDM/chatglm-6b'
|
| 5 |
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
| 6 |
-
model = AutoModel.from_pretrained(model_path, trust_remote_code=True).
|
| 7 |
model = model.eval()
|
| 8 |
|
| 9 |
MAX_TURNS = 20
|
| 10 |
MAX_BOXES = MAX_TURNS * 2
|
| 11 |
|
| 12 |
|
| 13 |
-
def predict(input, max_length, top_p, temperature, history=None):
|
| 14 |
-
if
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
updates =
|
| 24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
|
| 27 |
with gr.Blocks() as demo:
|
|
@@ -29,9 +34,9 @@ with gr.Blocks() as demo:
|
|
| 29 |
text_boxes = []
|
| 30 |
for i in range(MAX_BOXES):
|
| 31 |
if i % 2 == 0:
|
| 32 |
-
text_boxes.append(gr.
|
| 33 |
else:
|
| 34 |
-
text_boxes.append(gr.
|
| 35 |
|
| 36 |
with gr.Row():
|
| 37 |
with gr.Column(scale=4):
|
|
@@ -41,6 +46,7 @@ with gr.Blocks() as demo:
|
|
| 41 |
max_length = gr.Slider(0, 4096, value=2048, step=1.0, label="Maximum length", interactive=True)
|
| 42 |
top_p = gr.Slider(0, 1, value=0.7, step=0.01, label="Top P", interactive=True)
|
| 43 |
temperature = gr.Slider(0, 1, value=0.95, step=0.01, label="Temperature", interactive=True)
|
|
|
|
| 44 |
button = gr.Button("Generate")
|
| 45 |
-
button.click(predict, [txt, max_length, top_p, temperature, state], [state] + text_boxes)
|
| 46 |
-
demo.queue().launch(
|
|
|
|
| 1 |
from transformers import AutoModel, AutoTokenizer
|
| 2 |
import gradio as gr
|
| 3 |
import json
|
| 4 |
+
model_path = 'THUDM/chatglm-6b-int4-qe'
|
| 5 |
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
| 6 |
+
model = AutoModel.from_pretrained(model_path, trust_remote_code=True).half().float()
|
| 7 |
model = model.eval()
|
| 8 |
|
| 9 |
MAX_TURNS = 20
|
| 10 |
MAX_BOXES = MAX_TURNS * 2
|
| 11 |
|
| 12 |
|
| 13 |
+
def predict(input, max_length, top_p, temperature, history=None, state=None):
|
| 14 |
+
if state is None:
|
| 15 |
+
state = []
|
| 16 |
+
if history is None or history == "":
|
| 17 |
+
history = state
|
| 18 |
+
else:
|
| 19 |
+
history = json.loads(history)
|
| 20 |
+
|
| 21 |
+
for response, history in model.stream_chat(tokenizer, input, history, max_length=max_length, top_p=top_p,
|
| 22 |
+
temperature=temperature):
|
| 23 |
+
updates = []
|
| 24 |
+
for query, response in history:
|
| 25 |
+
updates.append(gr.update(visible=True, value=query))
|
| 26 |
+
updates.append(gr.update(visible=True, value=response))
|
| 27 |
+
if len(updates) < MAX_BOXES:
|
| 28 |
+
updates = updates + [gr.Textbox.update(visible=False)] * (MAX_BOXES - len(updates))
|
| 29 |
+
yield [history] + updates
|
| 30 |
|
| 31 |
|
| 32 |
with gr.Blocks() as demo:
|
|
|
|
| 34 |
text_boxes = []
|
| 35 |
for i in range(MAX_BOXES):
|
| 36 |
if i % 2 == 0:
|
| 37 |
+
text_boxes.append(gr.Text(visible=False, label="提问:"))
|
| 38 |
else:
|
| 39 |
+
text_boxes.append(gr.Text(visible=False, label="回复:"))
|
| 40 |
|
| 41 |
with gr.Row():
|
| 42 |
with gr.Column(scale=4):
|
|
|
|
| 46 |
max_length = gr.Slider(0, 4096, value=2048, step=1.0, label="Maximum length", interactive=True)
|
| 47 |
top_p = gr.Slider(0, 1, value=0.7, step=0.01, label="Top P", interactive=True)
|
| 48 |
temperature = gr.Slider(0, 1, value=0.95, step=0.01, label="Temperature", interactive=True)
|
| 49 |
+
history = gr.TextArea(visible=False)
|
| 50 |
button = gr.Button("Generate")
|
| 51 |
+
button.click(predict, [txt, max_length, top_p, temperature, history, state], [state] + text_boxes, queue=True)
|
| 52 |
+
demo.queue(concurrency_count=10).launch(enable_queue=True, max_threads=2)
|