Spaces:
Sleeping
Sleeping
Commit
·
7bf72c3
1
Parent(s):
e6956bc
Refactor image processing functions and add effects
Browse files- Cleaned up code formatting
- Added black and white effect
- Implemented sepia tone effect
- Introduced negative image effect
- Added watercolor and posterization effects
- filters.py +173 -57
filters.py
CHANGED
|
@@ -167,15 +167,15 @@ def warm_filter(image, intensity: int = 30):
|
|
| 167 |
"""
|
| 168 |
# Convert intensity to actual adjustment values
|
| 169 |
intensity_scale = intensity / 100.0
|
| 170 |
-
|
| 171 |
# Split the image into BGR channels
|
| 172 |
b, g, r = cv2.split(image.astype(np.float32))
|
| 173 |
-
|
| 174 |
# Increase red, slightly increase green, decrease blue
|
| 175 |
r = np.clip(r * (1 + 0.5 * intensity_scale), 0, 255)
|
| 176 |
g = np.clip(g * (1 + 0.1 * intensity_scale), 0, 255)
|
| 177 |
b = np.clip(b * (1 - 0.1 * intensity_scale), 0, 255)
|
| 178 |
-
|
| 179 |
return cv2.merge([b, g, r]).astype(np.uint8)
|
| 180 |
|
| 181 |
|
|
@@ -201,15 +201,15 @@ def cool_filter(image, intensity: int = 30):
|
|
| 201 |
"""
|
| 202 |
# Convert intensity to actual adjustment values
|
| 203 |
intensity_scale = intensity / 100.0
|
| 204 |
-
|
| 205 |
# Split the image into BGR channels
|
| 206 |
b, g, r = cv2.split(image.astype(np.float32))
|
| 207 |
-
|
| 208 |
# Increase blue, slightly increase green, decrease red
|
| 209 |
b = np.clip(b * (1 + 0.5 * intensity_scale), 0, 255)
|
| 210 |
g = np.clip(g * (1 + 0.1 * intensity_scale), 0, 255)
|
| 211 |
r = np.clip(r * (1 - 0.1 * intensity_scale), 0, 255)
|
| 212 |
-
|
| 213 |
return cv2.merge([b, g, r]).astype(np.uint8)
|
| 214 |
|
| 215 |
|
|
@@ -235,13 +235,13 @@ def adjust_saturation(image, factor: int = 50):
|
|
| 235 |
"""
|
| 236 |
# Convert factor to multiplication value (0.0 to 2.0)
|
| 237 |
factor = (factor / 50.0)
|
| 238 |
-
|
| 239 |
# Convert to HSV
|
| 240 |
hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV).astype(np.float32)
|
| 241 |
-
|
| 242 |
# Adjust saturation
|
| 243 |
hsv[:, :, 1] = np.clip(hsv[:, :, 1] * factor, 0, 255)
|
| 244 |
-
|
| 245 |
# Convert back to BGR
|
| 246 |
return cv2.cvtColor(hsv.astype(np.uint8), cv2.COLOR_HSV2BGR)
|
| 247 |
|
|
@@ -267,23 +267,23 @@ def vintage_filter(image, intensity: int = 50):
|
|
| 267 |
* `numpy.ndarray`: Image with vintage effect
|
| 268 |
"""
|
| 269 |
intensity_scale = intensity / 100.0
|
| 270 |
-
|
| 271 |
# Split channels
|
| 272 |
b, g, r = cv2.split(image.astype(np.float32))
|
| 273 |
-
|
| 274 |
# Adjust colors for vintage look
|
| 275 |
r = np.clip(r * (1 + 0.3 * intensity_scale), 0, 255)
|
| 276 |
g = np.clip(g * (1 - 0.1 * intensity_scale), 0, 255)
|
| 277 |
b = np.clip(b * (1 - 0.2 * intensity_scale), 0, 255)
|
| 278 |
-
|
| 279 |
# Create sepia-like effect
|
| 280 |
result = cv2.merge([b, g, r]).astype(np.uint8)
|
| 281 |
-
|
| 282 |
# Add slight blur for softness
|
| 283 |
if intensity > 0:
|
| 284 |
blur_amount = int(3 * intensity_scale) * 2 + 1
|
| 285 |
result = cv2.GaussianBlur(result, (blur_amount, blur_amount), 0)
|
| 286 |
-
|
| 287 |
return result
|
| 288 |
|
| 289 |
|
|
@@ -308,21 +308,21 @@ def vignette_effect(image, intensity: int = 50):
|
|
| 308 |
* `numpy.ndarray`: Image with vignette effect
|
| 309 |
"""
|
| 310 |
height, width = image.shape[:2]
|
| 311 |
-
|
| 312 |
# Create a vignette mask
|
| 313 |
X_resultant = np.abs(np.linspace(-1, 1, width)[None, :])
|
| 314 |
Y_resultant = np.abs(np.linspace(-1, 1, height)[:, None])
|
| 315 |
mask = np.sqrt(X_resultant**2 + Y_resultant**2)
|
| 316 |
mask = 1 - np.clip(mask, 0, 1)
|
| 317 |
-
|
| 318 |
# Adjust mask based on intensity
|
| 319 |
mask = (mask - mask.min()) / (mask.max() - mask.min())
|
| 320 |
mask = mask ** (1 + intensity/50)
|
| 321 |
-
|
| 322 |
# Apply mask to image
|
| 323 |
mask = mask[:, :, None]
|
| 324 |
result = image.astype(np.float32) * mask
|
| 325 |
-
|
| 326 |
return np.clip(result, 0, 255).astype(np.uint8)
|
| 327 |
|
| 328 |
|
|
@@ -347,27 +347,30 @@ def hdr_effect(image, strength: int = 50):
|
|
| 347 |
* `numpy.ndarray`: Image with HDR-like effect
|
| 348 |
"""
|
| 349 |
strength_scale = strength / 100.0
|
| 350 |
-
|
| 351 |
# Convert to LAB color space
|
| 352 |
lab = cv2.cvtColor(image, cv2.COLOR_BGR2LAB).astype(np.float32)
|
| 353 |
-
|
| 354 |
# Split channels
|
| 355 |
l, a, b = cv2.split(lab)
|
| 356 |
-
|
| 357 |
# Apply CLAHE to L channel
|
| 358 |
-
clahe = cv2.createCLAHE(
|
|
|
|
| 359 |
l = clahe.apply(l.astype(np.uint8)).astype(np.float32)
|
| 360 |
-
|
| 361 |
# Enhance local contrast
|
| 362 |
if strength > 0:
|
| 363 |
blur = cv2.GaussianBlur(l, (0, 0), 3)
|
| 364 |
-
detail = cv2.addWeighted(
|
| 365 |
-
|
| 366 |
-
|
|
|
|
|
|
|
| 367 |
# Merge channels and convert back
|
| 368 |
enhanced_lab = cv2.merge([l, a, b])
|
| 369 |
result = cv2.cvtColor(enhanced_lab.astype(np.uint8), cv2.COLOR_LAB2BGR)
|
| 370 |
-
|
| 371 |
return result
|
| 372 |
|
| 373 |
|
|
@@ -394,7 +397,7 @@ def gaussian_blur(image, kernel_size: int = 5):
|
|
| 394 |
# Ensure kernel size is odd
|
| 395 |
if kernel_size % 2 == 0:
|
| 396 |
kernel_size += 1
|
| 397 |
-
|
| 398 |
return cv2.GaussianBlur(image, (kernel_size, kernel_size), 0)
|
| 399 |
|
| 400 |
|
|
@@ -419,15 +422,15 @@ def sharpen(image, amount: int = 50):
|
|
| 419 |
* `numpy.ndarray`: Sharpened image
|
| 420 |
"""
|
| 421 |
amount = amount / 100.0
|
| 422 |
-
|
| 423 |
# Create the sharpening kernel
|
| 424 |
-
kernel = np.array([[-1
|
| 425 |
-
[-1, 9
|
| 426 |
-
[-1
|
| 427 |
-
|
| 428 |
# Apply the kernel
|
| 429 |
sharpened = cv2.filter2D(image, -1, kernel)
|
| 430 |
-
|
| 431 |
# Blend with original image based on amount
|
| 432 |
return cv2.addWeighted(image, 1 - amount, sharpened, amount, 0)
|
| 433 |
|
|
@@ -458,43 +461,43 @@ def emboss(image, strength: int = 50, direction: int = 0):
|
|
| 458 |
* `numpy.ndarray`: Embossed image
|
| 459 |
"""
|
| 460 |
strength = strength / 100.0 * 2.0 # Scale to 0-2 range
|
| 461 |
-
|
| 462 |
# Define kernels for different directions
|
| 463 |
kernels = [
|
| 464 |
-
np.array([[-1
|
| 465 |
[-1, 1, 1],
|
| 466 |
-
[
|
| 467 |
np.array([[-1, 0, 1],
|
| 468 |
[-1, 1, 1],
|
| 469 |
[-1, 0, 1]]), # 1 - left to right
|
| 470 |
-
np.array([[
|
| 471 |
[-1, 1, 1],
|
| 472 |
-
[-1
|
| 473 |
-
np.array([[
|
| 474 |
-
[
|
| 475 |
-
[-1
|
| 476 |
-
np.array([[
|
| 477 |
-
[ 1, 1
|
| 478 |
-
[
|
| 479 |
-
np.array([[
|
| 480 |
-
[ 1, 1
|
| 481 |
-
[
|
| 482 |
-
np.array([[
|
| 483 |
-
[ 1, 1
|
| 484 |
-
[
|
| 485 |
-
np.array([[-1
|
| 486 |
-
[
|
| 487 |
-
[
|
| 488 |
]
|
| 489 |
-
|
| 490 |
# Apply the kernel
|
| 491 |
kernel = kernels[direction % 8]
|
| 492 |
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
| 493 |
embossed = cv2.filter2D(gray, -1, kernel * strength)
|
| 494 |
-
|
| 495 |
# Normalize to ensure good contrast
|
| 496 |
embossed = cv2.normalize(embossed, None, 0, 255, cv2.NORM_MINMAX)
|
| 497 |
-
|
| 498 |
# Convert back to BGR
|
| 499 |
return cv2.cvtColor(embossed.astype(np.uint8), cv2.COLOR_GRAY2BGR)
|
| 500 |
|
|
@@ -526,3 +529,116 @@ def oil_painting(image, size: int = 5, dynRatio: int = 1):
|
|
| 526 |
"""
|
| 527 |
return cv2.xphoto.oilPainting(image, size, dynRatio)
|
| 528 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 167 |
"""
|
| 168 |
# Convert intensity to actual adjustment values
|
| 169 |
intensity_scale = intensity / 100.0
|
| 170 |
+
|
| 171 |
# Split the image into BGR channels
|
| 172 |
b, g, r = cv2.split(image.astype(np.float32))
|
| 173 |
+
|
| 174 |
# Increase red, slightly increase green, decrease blue
|
| 175 |
r = np.clip(r * (1 + 0.5 * intensity_scale), 0, 255)
|
| 176 |
g = np.clip(g * (1 + 0.1 * intensity_scale), 0, 255)
|
| 177 |
b = np.clip(b * (1 - 0.1 * intensity_scale), 0, 255)
|
| 178 |
+
|
| 179 |
return cv2.merge([b, g, r]).astype(np.uint8)
|
| 180 |
|
| 181 |
|
|
|
|
| 201 |
"""
|
| 202 |
# Convert intensity to actual adjustment values
|
| 203 |
intensity_scale = intensity / 100.0
|
| 204 |
+
|
| 205 |
# Split the image into BGR channels
|
| 206 |
b, g, r = cv2.split(image.astype(np.float32))
|
| 207 |
+
|
| 208 |
# Increase blue, slightly increase green, decrease red
|
| 209 |
b = np.clip(b * (1 + 0.5 * intensity_scale), 0, 255)
|
| 210 |
g = np.clip(g * (1 + 0.1 * intensity_scale), 0, 255)
|
| 211 |
r = np.clip(r * (1 - 0.1 * intensity_scale), 0, 255)
|
| 212 |
+
|
| 213 |
return cv2.merge([b, g, r]).astype(np.uint8)
|
| 214 |
|
| 215 |
|
|
|
|
| 235 |
"""
|
| 236 |
# Convert factor to multiplication value (0.0 to 2.0)
|
| 237 |
factor = (factor / 50.0)
|
| 238 |
+
|
| 239 |
# Convert to HSV
|
| 240 |
hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV).astype(np.float32)
|
| 241 |
+
|
| 242 |
# Adjust saturation
|
| 243 |
hsv[:, :, 1] = np.clip(hsv[:, :, 1] * factor, 0, 255)
|
| 244 |
+
|
| 245 |
# Convert back to BGR
|
| 246 |
return cv2.cvtColor(hsv.astype(np.uint8), cv2.COLOR_HSV2BGR)
|
| 247 |
|
|
|
|
| 267 |
* `numpy.ndarray`: Image with vintage effect
|
| 268 |
"""
|
| 269 |
intensity_scale = intensity / 100.0
|
| 270 |
+
|
| 271 |
# Split channels
|
| 272 |
b, g, r = cv2.split(image.astype(np.float32))
|
| 273 |
+
|
| 274 |
# Adjust colors for vintage look
|
| 275 |
r = np.clip(r * (1 + 0.3 * intensity_scale), 0, 255)
|
| 276 |
g = np.clip(g * (1 - 0.1 * intensity_scale), 0, 255)
|
| 277 |
b = np.clip(b * (1 - 0.2 * intensity_scale), 0, 255)
|
| 278 |
+
|
| 279 |
# Create sepia-like effect
|
| 280 |
result = cv2.merge([b, g, r]).astype(np.uint8)
|
| 281 |
+
|
| 282 |
# Add slight blur for softness
|
| 283 |
if intensity > 0:
|
| 284 |
blur_amount = int(3 * intensity_scale) * 2 + 1
|
| 285 |
result = cv2.GaussianBlur(result, (blur_amount, blur_amount), 0)
|
| 286 |
+
|
| 287 |
return result
|
| 288 |
|
| 289 |
|
|
|
|
| 308 |
* `numpy.ndarray`: Image with vignette effect
|
| 309 |
"""
|
| 310 |
height, width = image.shape[:2]
|
| 311 |
+
|
| 312 |
# Create a vignette mask
|
| 313 |
X_resultant = np.abs(np.linspace(-1, 1, width)[None, :])
|
| 314 |
Y_resultant = np.abs(np.linspace(-1, 1, height)[:, None])
|
| 315 |
mask = np.sqrt(X_resultant**2 + Y_resultant**2)
|
| 316 |
mask = 1 - np.clip(mask, 0, 1)
|
| 317 |
+
|
| 318 |
# Adjust mask based on intensity
|
| 319 |
mask = (mask - mask.min()) / (mask.max() - mask.min())
|
| 320 |
mask = mask ** (1 + intensity/50)
|
| 321 |
+
|
| 322 |
# Apply mask to image
|
| 323 |
mask = mask[:, :, None]
|
| 324 |
result = image.astype(np.float32) * mask
|
| 325 |
+
|
| 326 |
return np.clip(result, 0, 255).astype(np.uint8)
|
| 327 |
|
| 328 |
|
|
|
|
| 347 |
* `numpy.ndarray`: Image with HDR-like effect
|
| 348 |
"""
|
| 349 |
strength_scale = strength / 100.0
|
| 350 |
+
|
| 351 |
# Convert to LAB color space
|
| 352 |
lab = cv2.cvtColor(image, cv2.COLOR_BGR2LAB).astype(np.float32)
|
| 353 |
+
|
| 354 |
# Split channels
|
| 355 |
l, a, b = cv2.split(lab)
|
| 356 |
+
|
| 357 |
# Apply CLAHE to L channel
|
| 358 |
+
clahe = cv2.createCLAHE(
|
| 359 |
+
clipLimit=3.0 * strength_scale, tileGridSize=(8, 8))
|
| 360 |
l = clahe.apply(l.astype(np.uint8)).astype(np.float32)
|
| 361 |
+
|
| 362 |
# Enhance local contrast
|
| 363 |
if strength > 0:
|
| 364 |
blur = cv2.GaussianBlur(l, (0, 0), 3)
|
| 365 |
+
detail = cv2.addWeighted(
|
| 366 |
+
l, 1 + strength_scale, blur, -strength_scale, 0)
|
| 367 |
+
l = cv2.addWeighted(l, 1 - strength_scale/2,
|
| 368 |
+
detail, strength_scale/2, 0)
|
| 369 |
+
|
| 370 |
# Merge channels and convert back
|
| 371 |
enhanced_lab = cv2.merge([l, a, b])
|
| 372 |
result = cv2.cvtColor(enhanced_lab.astype(np.uint8), cv2.COLOR_LAB2BGR)
|
| 373 |
+
|
| 374 |
return result
|
| 375 |
|
| 376 |
|
|
|
|
| 397 |
# Ensure kernel size is odd
|
| 398 |
if kernel_size % 2 == 0:
|
| 399 |
kernel_size += 1
|
| 400 |
+
|
| 401 |
return cv2.GaussianBlur(image, (kernel_size, kernel_size), 0)
|
| 402 |
|
| 403 |
|
|
|
|
| 422 |
* `numpy.ndarray`: Sharpened image
|
| 423 |
"""
|
| 424 |
amount = amount / 100.0
|
| 425 |
+
|
| 426 |
# Create the sharpening kernel
|
| 427 |
+
kernel = np.array([[-1, -1, -1],
|
| 428 |
+
[-1, 9, -1],
|
| 429 |
+
[-1, -1, -1]])
|
| 430 |
+
|
| 431 |
# Apply the kernel
|
| 432 |
sharpened = cv2.filter2D(image, -1, kernel)
|
| 433 |
+
|
| 434 |
# Blend with original image based on amount
|
| 435 |
return cv2.addWeighted(image, 1 - amount, sharpened, amount, 0)
|
| 436 |
|
|
|
|
| 461 |
* `numpy.ndarray`: Embossed image
|
| 462 |
"""
|
| 463 |
strength = strength / 100.0 * 2.0 # Scale to 0-2 range
|
| 464 |
+
|
| 465 |
# Define kernels for different directions
|
| 466 |
kernels = [
|
| 467 |
+
np.array([[-1, -1, 0],
|
| 468 |
[-1, 1, 1],
|
| 469 |
+
[0, 1, 1]]), # 0 - top left to bottom right
|
| 470 |
np.array([[-1, 0, 1],
|
| 471 |
[-1, 1, 1],
|
| 472 |
[-1, 0, 1]]), # 1 - left to right
|
| 473 |
+
np.array([[0, 1, 1],
|
| 474 |
[-1, 1, 1],
|
| 475 |
+
[-1, -1, 0]]), # 2 - bottom left to top right
|
| 476 |
+
np.array([[1, 1, 1],
|
| 477 |
+
[0, 1, 0],
|
| 478 |
+
[-1, -1, -1]]), # 3 - bottom to top
|
| 479 |
+
np.array([[1, 1, 0],
|
| 480 |
+
[1, 1, -1],
|
| 481 |
+
[0, -1, -1]]), # 4 - bottom right to top left
|
| 482 |
+
np.array([[1, 0, -1],
|
| 483 |
+
[1, 1, -1],
|
| 484 |
+
[1, 0, -1]]), # 5 - right to left
|
| 485 |
+
np.array([[0, -1, -1],
|
| 486 |
+
[1, 1, -1],
|
| 487 |
+
[1, 1, 0]]), # 6 - top right to bottom left
|
| 488 |
+
np.array([[-1, -1, -1],
|
| 489 |
+
[0, 1, 0],
|
| 490 |
+
[1, 1, 1]]) # 7 - top to bottom
|
| 491 |
]
|
| 492 |
+
|
| 493 |
# Apply the kernel
|
| 494 |
kernel = kernels[direction % 8]
|
| 495 |
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
| 496 |
embossed = cv2.filter2D(gray, -1, kernel * strength)
|
| 497 |
+
|
| 498 |
# Normalize to ensure good contrast
|
| 499 |
embossed = cv2.normalize(embossed, None, 0, 255, cv2.NORM_MINMAX)
|
| 500 |
+
|
| 501 |
# Convert back to BGR
|
| 502 |
return cv2.cvtColor(embossed.astype(np.uint8), cv2.COLOR_GRAY2BGR)
|
| 503 |
|
|
|
|
| 529 |
"""
|
| 530 |
return cv2.xphoto.oilPainting(image, size, dynRatio)
|
| 531 |
|
| 532 |
+
|
| 533 |
+
@registry.register("Black and White")
|
| 534 |
+
def black_and_white(image):
|
| 535 |
+
"""
|
| 536 |
+
## Convert image to classic black and white.
|
| 537 |
+
|
| 538 |
+
**Args:**
|
| 539 |
+
* `image` (numpy.ndarray): Input image (BGR)
|
| 540 |
+
|
| 541 |
+
**Returns:**
|
| 542 |
+
* `numpy.ndarray`: Grayscale image
|
| 543 |
+
"""
|
| 544 |
+
return cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
| 545 |
+
|
| 546 |
+
|
| 547 |
+
@registry.register("Sepia")
|
| 548 |
+
def sepia(image):
|
| 549 |
+
"""
|
| 550 |
+
## Apply a warm sepia tone effect.
|
| 551 |
+
|
| 552 |
+
**Args:**
|
| 553 |
+
* `image` (numpy.ndarray): Input image (BGR)
|
| 554 |
+
|
| 555 |
+
**Returns:**
|
| 556 |
+
* `numpy.ndarray`: Sepia toned image
|
| 557 |
+
"""
|
| 558 |
+
# Convert to RGB
|
| 559 |
+
rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
| 560 |
+
|
| 561 |
+
# Apply sepia matrix
|
| 562 |
+
sepia_matrix = np.array([
|
| 563 |
+
[0.393, 0.769, 0.189],
|
| 564 |
+
[0.349, 0.686, 0.168],
|
| 565 |
+
[0.272, 0.534, 0.131]
|
| 566 |
+
])
|
| 567 |
+
|
| 568 |
+
sepia_image = np.dot(rgb, sepia_matrix.T)
|
| 569 |
+
sepia_image = np.clip(sepia_image, 0, 255)
|
| 570 |
+
|
| 571 |
+
return cv2.cvtColor(sepia_image.astype(np.uint8), cv2.COLOR_RGB2BGR)
|
| 572 |
+
|
| 573 |
+
|
| 574 |
+
@registry.register("Negative")
|
| 575 |
+
def negative(image):
|
| 576 |
+
"""
|
| 577 |
+
## Invert colors to create a negative effect.
|
| 578 |
+
|
| 579 |
+
**Args:**
|
| 580 |
+
* `image` (numpy.ndarray): Input image (BGR)
|
| 581 |
+
|
| 582 |
+
**Returns:**
|
| 583 |
+
* `numpy.ndarray`: Negative image
|
| 584 |
+
"""
|
| 585 |
+
return cv2.bitwise_not(image)
|
| 586 |
+
|
| 587 |
+
|
| 588 |
+
@registry.register("Watercolor")
|
| 589 |
+
def watercolor(image):
|
| 590 |
+
"""
|
| 591 |
+
## Apply a watercolor painting effect.
|
| 592 |
+
|
| 593 |
+
**Args:**
|
| 594 |
+
* `image` (numpy.ndarray): Input image (BGR)
|
| 595 |
+
|
| 596 |
+
**Returns:**
|
| 597 |
+
* `numpy.ndarray`: Watercolor effect image
|
| 598 |
+
"""
|
| 599 |
+
# Apply bilateral filter to create watercolor effect
|
| 600 |
+
return cv2.xphoto.oilPainting(image, 7, 1)
|
| 601 |
+
|
| 602 |
+
|
| 603 |
+
@registry.register("Posterization")
|
| 604 |
+
def posterize(image):
|
| 605 |
+
"""
|
| 606 |
+
## Reduce colors to create a posterization effect.
|
| 607 |
+
|
| 608 |
+
**Args:**
|
| 609 |
+
* `image` (numpy.ndarray): Input image (BGR)
|
| 610 |
+
|
| 611 |
+
**Returns:**
|
| 612 |
+
* `numpy.ndarray`: Posterized image
|
| 613 |
+
"""
|
| 614 |
+
# Convert to HSV
|
| 615 |
+
hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
|
| 616 |
+
|
| 617 |
+
# Reduce color levels
|
| 618 |
+
hsv[:, :, 1] = cv2.equalizeHist(hsv[:, :, 1])
|
| 619 |
+
hsv[:, :, 2] = cv2.equalizeHist(hsv[:, :, 2])
|
| 620 |
+
|
| 621 |
+
# Convert back to BGR
|
| 622 |
+
return cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)
|
| 623 |
+
|
| 624 |
+
|
| 625 |
+
@registry.register("Cross Process")
|
| 626 |
+
def cross_process(image):
|
| 627 |
+
"""
|
| 628 |
+
## Apply a film cross-processing effect.
|
| 629 |
+
|
| 630 |
+
**Args:**
|
| 631 |
+
* `image` (numpy.ndarray): Input image (BGR)
|
| 632 |
+
|
| 633 |
+
**Returns:**
|
| 634 |
+
* `numpy.ndarray`: Cross-processed image
|
| 635 |
+
"""
|
| 636 |
+
# Split channels
|
| 637 |
+
b, g, r = cv2.split(image.astype(np.float32))
|
| 638 |
+
|
| 639 |
+
# Apply cross-process transformation
|
| 640 |
+
b = np.clip(b * 1.2, 0, 255)
|
| 641 |
+
g = np.clip(g * 0.8, 0, 255)
|
| 642 |
+
r = np.clip(r * 1.4, 0, 255)
|
| 643 |
+
|
| 644 |
+
return cv2.merge([b, g, r]).astype(np.uint8)
|