Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import PIL.Image, PIL.ImageOps | |
| import torch | |
| import torchvision.transforms.functional as F | |
| from matplotlib import cm | |
| from matplotlib.colors import to_hex | |
| import numpy as np | |
| from src.models.dino import DINOSegmentationModel | |
| from src.models.vit import ViTSegmentation | |
| from src.models.unet import UNet | |
| from src.utils import get_transform | |
| device = torch.device("cpu") | |
| model_weight1 = "weights/dino.pth" | |
| model_weight2 = "weights/vit.pth" | |
| model_weight3 = "weights/unet.pth" | |
| model1 = DINOSegmentationModel() | |
| model1.segmentation_head.load_state_dict(torch.load(model_weight1, map_location=device)) | |
| model1.eval() | |
| model2 = ViTSegmentation() | |
| model2.segmentation_head.load_state_dict(torch.load(model_weight2, map_location=device)) | |
| model2.eval() | |
| model3 = UNet() | |
| model3.load_state_dict(torch.load(model_weight3, map_location=device)) | |
| model3.eval() | |
| mask_labels = { | |
| "0": "Background", "1": "Person", "2": "Skin", "3": "Left-brow", "4": "Right-brow", | |
| "5": "Left-eye", "6": "Right-eye", "7": "Lips", "8": "Teeth" | |
| } | |
| color_map = cm.get_cmap('tab20', 9) | |
| label_colors = {label: to_hex(color_map(idx / len(mask_labels))[:3]) for idx, label in enumerate(mask_labels)} | |
| fixed_colors = np.array([color_map(i)[:3] for i in range(9)]) * 255 | |
| def mask_to_color(mask: np.ndarray) -> np.ndarray: | |
| h, w = mask.shape | |
| color_mask = np.zeros((h, w, 3), dtype=np.uint8) | |
| for class_idx in range(9): | |
| color_mask[mask == class_idx] = fixed_colors[class_idx] | |
| return color_mask | |
| def segment_image(image, model_name: str) -> PIL.Image: | |
| if model_name == "DINO": | |
| model = model1 | |
| elif model_name == "ViT": | |
| model = model2 | |
| else: | |
| model = model3 | |
| original_width, original_height = image.size | |
| transform = get_transform(model.mean, model.std) | |
| input_tensor = transform(image).unsqueeze(0) | |
| with torch.no_grad(): | |
| mask = model(input_tensor) | |
| mask = torch.argmax(mask.squeeze(), dim=0).cpu().numpy() | |
| mask_image = mask_to_color(mask) | |
| mask_image = PIL.Image.fromarray(mask_image) | |
| mask_aspect_ratio = mask_image.width / mask_image.height | |
| new_height = original_height | |
| new_width = int(new_height * mask_aspect_ratio) | |
| mask_image = mask_image.resize((new_width, new_height), PIL.Image.Resampling.NEAREST) | |
| final_mask = PIL.Image.new("RGB", (original_width, original_height)) | |
| offset = ((original_width - new_width) // 2, 0) | |
| final_mask.paste(mask_image, offset) | |
| return final_mask | |
| def generate_legend_html_compact() -> str: | |
| legend_html = """ | |
| <div style='display: flex; flex-wrap: wrap; gap: 10px; justify-content: center;'> | |
| """ | |
| for idx, (label, color) in enumerate(label_colors.items()): | |
| legend_html += f""" | |
| <div style='display: flex; align-items: center; justify-content: center; | |
| padding: 5px 10px; border: 1px solid {color}; | |
| background-color: {color}; border-radius: 5px; | |
| color: white; font-size: 12px; text-align: center;'> | |
| {mask_labels[label]} | |
| </div> | |
| """ | |
| legend_html += "</div>" | |
| return legend_html | |
| examples = [ | |
| ["assets/images_examples/image1.jpg"], | |
| ["assets/images_examples/image2.jpg"], | |
| ["assets/images_examples/image3.jpg"] | |
| ] | |
| with gr.Blocks() as demo: | |
| gr.Markdown("## Face Segmentation") | |
| with gr.Row(): | |
| with gr.Column(): | |
| pic = gr.Image(label="Upload Human Image", type="pil", height=400, width=400) | |
| model_choice = gr.Dropdown(choices=["DINO", "ViT", "UNet"], label="Select Model", value="DINO") | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| predict_btn = gr.Button("Predict") | |
| with gr.Column(scale=1): | |
| clear_btn = gr.Button("Clear") | |
| with gr.Column(): | |
| output = gr.Image(label="Mask", type="pil", height=400, width=400) | |
| legend = gr.HTML(label="Legend", value=generate_legend_html_compact()) | |
| predict_btn.click(fn=segment_image, inputs=[pic, model_choice], outputs=output, api_name="predict") | |
| clear_btn.click(lambda: (None, None), outputs=[pic, output]) | |
| gr.Examples(examples=examples, inputs=[pic]) | |
| demo.launch() | |