Spaces:
Paused
Paused
Update app_ltx.py
Browse files- app_ltx.py +28 -121
app_ltx.py
CHANGED
|
@@ -1,3 +1,4 @@
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
import numpy as np
|
|
@@ -13,93 +14,17 @@ from huggingface_hub import snapshot_download
|
|
| 13 |
from huggingface_hub import hf_hub_download
|
| 14 |
import shutil
|
| 15 |
import sys
|
|
|
|
|
|
|
| 16 |
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
create_latent_upsampler,
|
| 20 |
-
load_image_to_tensor_with_resize_and_crop,
|
| 21 |
-
seed_everething,
|
| 22 |
-
get_device,
|
| 23 |
-
calculate_padding,
|
| 24 |
-
load_media_file
|
| 25 |
-
)
|
| 26 |
-
from ltx_video.pipelines.pipeline_ltx_video import ConditioningItem, LTXMultiScalePipeline, LTXVideoPipeline
|
| 27 |
-
from ltx_video.utils.skip_layer_strategy import SkipLayerStrategy
|
| 28 |
-
|
| 29 |
-
APP_HOME = Path(os.environ.get("APP_HOME", "/app"))
|
| 30 |
-
|
| 31 |
-
config_file_path = APP_HOME / "configs/ltxv-13b-0.9.8-distilled-fp8.yaml"
|
| 32 |
-
with open(config_file_path, "r") as file:
|
| 33 |
-
PIPELINE_CONFIG_YAML = yaml.safe_load(file)
|
| 34 |
-
|
| 35 |
-
HF_HOME_CACHE = Path(os.getenv("HF_HOME", "/data/.cache/huggingface"))
|
| 36 |
-
models_dir = Path("/data/ltx_models")
|
| 37 |
-
LTX_REPO = "Lightricks/LTX-Video"
|
| 38 |
-
MAX_IMAGE_SIZE = PIPELINE_CONFIG_YAML.get("max_resolution", 1280)
|
| 39 |
-
MAX_NUM_FRAMES = 257
|
| 40 |
-
FPS = 30.0
|
| 41 |
-
|
| 42 |
-
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 43 |
-
DTYPE = torch.bfloat16 if DEVICE == "cuda" and torch.cuda.is_bf16_supported() else torch.float16
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
# --- Global variables for loaded models ---
|
| 47 |
-
pipeline_instance = None
|
| 48 |
-
latent_upsampler_instance = None
|
| 49 |
-
|
| 50 |
-
Path(models_dir).mkdir(parents=True, exist_ok=True)
|
| 51 |
-
|
| 52 |
-
print("Downloading models (if not present)...")
|
| 53 |
-
distilled_model_actual_path = hf_hub_download(
|
| 54 |
-
repo_id=LTX_REPO,
|
| 55 |
-
filename=PIPELINE_CONFIG_YAML["checkpoint_path"],
|
| 56 |
-
local_dir=models_dir,
|
| 57 |
-
#local_dir_use_symlinks=False,
|
| 58 |
-
cache_dir=HF_HOME_CACHE,
|
| 59 |
-
)
|
| 60 |
-
PIPELINE_CONFIG_YAML["checkpoint_path"] = distilled_model_actual_path
|
| 61 |
-
print(f"Distilled model path: {distilled_model_actual_path}")
|
| 62 |
-
|
| 63 |
-
SPATIAL_UPSCALER_FILENAME = PIPELINE_CONFIG_YAML["spatial_upscaler_model_path"]
|
| 64 |
-
spatial_upscaler_actual_path = hf_hub_download(
|
| 65 |
-
repo_id=LTX_REPO,
|
| 66 |
-
filename=SPATIAL_UPSCALER_FILENAME,
|
| 67 |
-
local_dir=models_dir,
|
| 68 |
-
#local_dir_use_symlinks=False,
|
| 69 |
-
cache_dir=HF_HOME_CACHE,
|
| 70 |
-
)
|
| 71 |
-
PIPELINE_CONFIG_YAML["spatial_upscaler_model_path"] = spatial_upscaler_actual_path
|
| 72 |
-
print(f"Spatial upscaler model path: {spatial_upscaler_actual_path}")
|
| 73 |
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
ckpt_path=PIPELINE_CONFIG_YAML["checkpoint_path"],
|
| 77 |
-
precision=PIPELINE_CONFIG_YAML["precision"],
|
| 78 |
-
text_encoder_model_name_or_path=PIPELINE_CONFIG_YAML["text_encoder_model_name_or_path"],
|
| 79 |
-
sampler=PIPELINE_CONFIG_YAML["sampler"],
|
| 80 |
-
device="cpu",
|
| 81 |
-
enhance_prompt=False,
|
| 82 |
-
prompt_enhancer_image_caption_model_name_or_path=PIPELINE_CONFIG_YAML["prompt_enhancer_image_caption_model_name_or_path"],
|
| 83 |
-
prompt_enhancer_llm_model_name_or_path=PIPELINE_CONFIG_YAML["prompt_enhancer_llm_model_name_or_path"],
|
| 84 |
)
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
if PIPELINE_CONFIG_YAML.get("spatial_upscaler_model_path"):
|
| 88 |
-
print("Creating latent upsampler on CPU...")
|
| 89 |
-
latent_upsampler_instance = create_latent_upsampler(
|
| 90 |
-
PIPELINE_CONFIG_YAML["spatial_upscaler_model_path"],
|
| 91 |
-
device="cpu"
|
| 92 |
-
)
|
| 93 |
-
print("Latent upsampler created on CPU.")
|
| 94 |
-
|
| 95 |
-
target_inference_device = "cuda"
|
| 96 |
-
print(f"Target inference device: {target_inference_device}")
|
| 97 |
-
pipeline_instance.to(target_inference_device)
|
| 98 |
-
if latent_upsampler_instance:
|
| 99 |
-
latent_upsampler_instance.to(target_inference_device)
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
|
| 104 |
|
| 105 |
# --- FUNÇÃO DE GERAÇÃO PRINCIPAL ---
|
|
@@ -109,45 +34,27 @@ def generate(
|
|
| 109 |
progress=gr.Progress(track_tqdm=True)
|
| 110 |
):
|
| 111 |
seed_everething(seed)
|
| 112 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
|
| 114 |
-
generator = torch.Generator(device=DEVICE).manual_seed(seed)
|
| 115 |
-
|
| 116 |
-
height_padded = ((target_height - 1) // 32 + 1) * 32
|
| 117 |
-
width_padded = ((target_width - 1) // 32 + 1) * 32
|
| 118 |
-
padding_values = calculate_padding(target_height, target_width, height_padded, width_padded)
|
| 119 |
-
|
| 120 |
-
conditioning_items = None
|
| 121 |
-
if image_input:
|
| 122 |
-
progress(0.1, desc="Preparando imagem de condição...")
|
| 123 |
-
media_tensor = load_media_file(
|
| 124 |
-
media_path=image_input, height=target_height, width=target_width,
|
| 125 |
-
max_frames=1, padding=padding_values, just_crop=True
|
| 126 |
-
)
|
| 127 |
-
conditioning_items = [ConditioningItem(media_tensor.to(DEVICE, dtype=DTYPE), 0, 1.0)]
|
| 128 |
-
|
| 129 |
-
multi_scale_pipeline = LTXMultiScalePipeline(pipeline_instance, latent_upsampler_instance)
|
| 130 |
-
|
| 131 |
-
call_kwargs = {
|
| 132 |
-
"prompt": prompt, "negative_prompt": "worst quality...",
|
| 133 |
-
"height": target_height, "width": target_width, "num_frames": num_frames, "frame_rate": int(FPS),
|
| 134 |
-
"generator": generator, "output_type": "pt",
|
| 135 |
-
"conditioning_items": conditioning_items,
|
| 136 |
-
**PIPELINE_CONFIG_YAML
|
| 137 |
-
}
|
| 138 |
-
|
| 139 |
-
progress(0.3, desc="Gerando vídeo...")
|
| 140 |
-
result_tensor = multi_scale_pipeline(**call_kwargs).images
|
| 141 |
-
|
| 142 |
-
pad_left, pad_right, pad_top, pad_bottom = padding_values
|
| 143 |
-
slice_h_end = -pad_bottom if pad_bottom > 0 else None
|
| 144 |
-
slice_w_end = -pad_right if pad_right > 0 else None
|
| 145 |
-
result_tensor = result_tensor[:, :, :num_frames, pad_top:slice_h_end, pad_left:slice_w_end]
|
| 146 |
|
| 147 |
-
progress(0.9, desc="Exportando vídeo...")
|
| 148 |
-
output_video_path = tempfile.mktemp(suffix=".mp4")
|
| 149 |
-
video_np = result_tensor[0].permute(1, 2, 3, 0).cpu().float().numpy()
|
| 150 |
-
video_np = np.clip(video_np * 255, 0, 255).astype("uint8")
|
| 151 |
export_to_video(video_np, str(output_video_path), fps=24)
|
| 152 |
|
| 153 |
return output_video_path
|
|
|
|
| 1 |
+
import torch
|
| 2 |
import gradio as gr
|
| 3 |
import torch
|
| 4 |
import numpy as np
|
|
|
|
| 14 |
from huggingface_hub import hf_hub_download
|
| 15 |
import shutil
|
| 16 |
import sys
|
| 17 |
+
from diffusers import LTXImageToVideoPipeline
|
| 18 |
+
from diffusers.utils import export_to_video, load_image
|
| 19 |
|
| 20 |
+
pipe = LTXImageToVideoPipeline.from_pretrained("Lightricks/LTX-Video", torch_dtype=torch.bfloat16)
|
| 21 |
+
pipe.to("cuda")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
+
image = load_image(
|
| 24 |
+
"https://huggingface.co/datasets/a-r-r-o-w/tiny-meme-dataset-captioned/resolve/main/images/8.png"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
)
|
| 26 |
+
prompt = "A young girl stands calmly in the foreground, looking directly at the camera, as a house fire rages in the background. Flames engulf the structure, with smoke billowing into the air. Firefighters in protective gear rush to the scene, a fire truck labeled '38' visible behind them. The girl's neutral expression contrasts sharply with the chaos of the fire, creating a poignant and emotionally charged scene."
|
| 27 |
+
negative_prompt = "worst quality, inconsistent motion, blurry, jittery, distorted"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
|
| 30 |
# --- FUNÇÃO DE GERAÇÃO PRINCIPAL ---
|
|
|
|
| 34 |
progress=gr.Progress(track_tqdm=True)
|
| 35 |
):
|
| 36 |
seed_everething(seed)
|
| 37 |
+
|
| 38 |
+
#conditioning_items = None
|
| 39 |
+
#if image_input:
|
| 40 |
+
# progress(0.1, desc="Preparando imagem de condição...")
|
| 41 |
+
# media_tensor = load_media_file(
|
| 42 |
+
# media_path=image_input, height=target_height, width=target_width,
|
| 43 |
+
# max_frames=1, padding=padding_values, just_crop=True
|
| 44 |
+
# )
|
| 45 |
+
# conditioning_items = [ConditioningItem(media_tensor.to(DEVICE, dtype=DTYPE), 0, 1.0)]
|
| 46 |
+
|
| 47 |
+
video = pipe(
|
| 48 |
+
image=load_image(image),
|
| 49 |
+
prompt=prompt,
|
| 50 |
+
negative_prompt=negative_prompt,
|
| 51 |
+
width=480,
|
| 52 |
+
height=480,
|
| 53 |
+
num_frames=120,
|
| 54 |
+
num_inference_steps=50,
|
| 55 |
+
).frames[0]
|
| 56 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
export_to_video(video_np, str(output_video_path), fps=24)
|
| 59 |
|
| 60 |
return output_video_path
|