x2XcarleX2x commited on
Commit
fba9280
·
verified ·
1 Parent(s): 1ac86d8

Update Dockerfile

Browse files
Files changed (1) hide show
  1. Dockerfile +200 -307
Dockerfile CHANGED
@@ -1,308 +1,201 @@
1
- # aduc_framework/managers/wan_manager.py
2
- # WanManager v1.5.3 (Correção final de dispositivo para `device_map="auto"`)
3
-
4
- import os
5
- import platform
6
- import shutil
7
- import subprocess
8
- import tempfile
9
- import random
10
- from typing import List, Any, Optional, Tuple
11
-
12
- import numpy as np
13
- import torch
14
- from PIL import Image
15
- import imageio.v2 as imageio
16
- from moviepy.editor import VideoFileClip, concatenate_videoclips
17
-
18
- torch.backends.cuda.matmul.allow_tf32 = True
19
-
20
- try:
21
- from torch.nn.attention import sdpa_kernel, SDPBackend
22
- _SDPA_NEW = True
23
- except ImportError:
24
- _SDPA_NEW = False
25
-
26
- from diffusers import FlowMatchEulerDiscreteScheduler
27
- from diffusers.pipelines.wan.pipeline_wan_i2v import WanImageToVideoPipeline
28
- from diffusers.models.transformers.transformer_wan import WanTransformer3DModel
29
- from diffusers.utils.export_utils import export_to_video
30
- from aduc_framework.utils.callbacks import DenoiseStepLogger
31
-
32
- class WanManager:
33
- """
34
- Gerenciador de produção v1.5.3:
35
- - CORREÇÃO: Remove o gerenciamento manual de dispositivos na preparação de tensores
36
- para ser totalmente compatível com a automação do `accelerate` e `device_map="auto"`.
37
- Resolve os erros "Cannot copy out of meta tensor".
38
- - Mantém o `yield` para atualizações em tempo real, os modos I2V e V2V,
39
- e toda a lógica de validação robusta.
40
- """
41
- MODEL_ID = "Wan-AI/Wan2.2-I2V-A14B-Diffusers"
42
- TRANSFORMER_ID = "cbensimon/Wan2.2-I2V-A14B-bf16-Diffusers"
43
- MIN_FRAMES_MODEL = 8
44
- MAX_FRAMES_MODEL = 81
45
- default_negative_prompt = (
46
- "bright, overexposed, static, blurry details, text, subtitles, watermark, style, "
47
- "artwork, painting, still image, gray scale, worst quality, low quality, jpeg artifacts, "
48
- "ugly, deformed, disfigured, missing fingers, extra fingers, poorly drawn hands, "
49
- "poorly drawn face, malformed limbs, fused fingers, messy background, three legs, "
50
- "too many people, walking backwards."
51
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52
 
53
- def __init__(self) -> None:
54
- self._print_env_banner()
55
- print("Loading models into memory...")
56
- n_gpus = torch.cuda.device_count()
57
- max_memory = {i: "43GiB" for i in range(n_gpus)}
58
- max_memory["cpu"] = "120GiB"
59
- transformer = WanTransformer3DModel.from_pretrained(
60
- self.TRANSFORMER_ID, subfolder="transformer", torch_dtype=torch.bfloat16,
61
- device_map="auto", max_memory=max_memory
62
- )
63
- transformer_2 = WanTransformer3DModel.from_pretrained(
64
- self.TRANSFORMER_ID, subfolder="transformer_2", torch_dtype=torch.bfloat16,
65
- device_map="auto", max_memory=max_memory
66
- )
67
- self.pipe = WanImageToVideoPipeline.from_pretrained(
68
- self.MODEL_ID, transformer=transformer, transformer_2=transformer_2, torch_dtype=torch.bfloat16
69
- )
70
- self.pipe.scheduler = FlowMatchEulerDiscreteScheduler.from_config(self.pipe.scheduler.config, shift=32.0)
71
-
72
- print("Applying 8-step Lightning LoRA...")
73
- try:
74
- self.pipe.load_lora_weights("Kijai/WanVideo_comfy", weight_name="Lightx2v/lightx2v_I2V_14B_480p_cfg_step_distill_rank128_bf16.safetensors", adapter_name="lightx2v")
75
- self.pipe.load_lora_weights("Kijai/WanVideo_comfy", weight_name="Lightx2v/lightx2v_I2V_14B_480p_cfg_step_distill_rank128_bf16.safetensors", adapter_name="lightx2v_2", load_into_transformer_2=True)
76
- self.pipe.set_adapters(["lightx2v", "lightx2v_2"], adapter_weights=[1.0, 1.0])
77
- print("Fusing LoRA weights into the main model...")
78
- self.pipe.fuse_lora(adapter_names=["lightx2v"], lora_scale=3.0, components=["transformer"])
79
- self.pipe.fuse_lora(adapter_names=["lightx2v_2"], lora_scale=1.0, components=["transformer_2"])
80
- self.pipe.unload_lora_weights()
81
- print("Lightning LoRA successfully fused.")
82
- except Exception as e:
83
- print(f"[WanManager] AVISO: Falha ao fundir LoRA Lightning: {e}")
84
- print("All models loaded. Service is ready.")
85
-
86
- def _print_env_banner(self) -> None:
87
- def _safe_get(fn, default="n/a"):
88
- try: return fn()
89
- except Exception: return default
90
-
91
- torch_ver = getattr(torch, "__version__", "unknown")
92
- cuda_rt = getattr(torch.version, "cuda", "unknown")
93
- cudnn_ver = _safe_get(lambda: torch.backends.cudnn.version())
94
- cuda_ok = torch.cuda.is_available()
95
- n_gpu = torch.cuda.device_count() if cuda_ok else 0
96
- devs, total_vram, caps = [], [], []
97
- if cuda_ok:
98
- for i in range(n_gpu):
99
- props = torch.cuda.get_device_properties(i)
100
- devs.append(f"cuda:{i} {props.name}")
101
- total_vram.append(f"{props.total_memory/1024**3:.1f}GiB")
102
- caps.append(f"{props.major}.{props.minor}")
103
-
104
- try: bf16_supported = torch.cuda.is_bf16_supported()
105
- except: bf16_supported = False
106
-
107
- tf32_allowed = torch.backends.cuda.matmul.allow_tf32
108
- sdpa_api = "torch.nn.attention (2.1+)" if _SDPA_NEW else "torch.backends.cuda (2.0)" if not _SDPA_NEW and hasattr(torch.backends.cuda, 'sdp_kernel') else "unavailable"
109
-
110
- try:
111
- import xformers
112
- xformers_ok = True
113
- except ImportError:
114
- xformers_ok = False
115
-
116
- alloc_conf = os.environ.get("PYTORCH_CUDA_ALLOC_CONF", "unset")
117
- visible = os.environ.get("CUDA_VISIBLE_DEVICES", "unset")
118
- python_ver = platform.python_version()
119
- nvcc = shutil.which("nvcc")
120
- nvcc_ver = "n/a"
121
- if nvcc:
122
- try: nvcc_ver = subprocess.check_output([nvcc, "--version"], text=True).strip().splitlines()[-1]
123
- except Exception: nvcc_ver = "n/a"
124
-
125
- banner_lines = [
126
- "================== WAN MANAGER • ENV ==================",
127
- f"Python : {python_ver}", f"PyTorch : {torch_ver}",
128
- f"CUDA (torch) : {cuda_rt}", f"cuDNN : {cudnn_ver}",
129
- f"CUDA available : {cuda_ok}", f"GPU count : {n_gpu}",
130
- f"GPUs : {', '.join(devs) if devs else 'n/a'}",
131
- f"GPU VRAM : {', '.join(total_vram) if total_vram else 'n/a'}",
132
- f"Compute Capability : {', '.join(caps) if caps else 'n/a'}",
133
- f"BF16 supported : {bf16_supported}", f"TF32 allowed : {tf32_allowed}",
134
- f"SDPA API : {sdpa_api}", f"xFormers available : {xformers_ok}",
135
- f"CUDA_VISIBLE_DEVICES: {visible}", f"PYTORCH_CUDA_ALLOC_CONF: {alloc_conf}",
136
- f"nvcc : {nvcc_ver}",
137
- "=======================================================",
138
- ]
139
- print("\n".join(banner_lines))
140
-
141
- def resize_and_crop_to_match(self, target: Image.Image, ref_w: int, ref_h: int) -> Image.Image:
142
- tw, th = target.size
143
- s = max(ref_w / tw, ref_h / th)
144
- nw, nh = int(tw * s), int(th * s)
145
- resized = target.resize((nw, nh), Image.Resampling.LANCZOS)
146
- left, top = (nw - ref_w) // 2, (nh - ref_h) // 2
147
- return resized.crop((left, top, left + ref_w, top + ref_h))
148
-
149
- def _preprocess_causal_video(self, video_path: str, target_fps: int, target_w: int, target_h: int) -> str:
150
- print(f"[WanManager] Pré-processando vídeo: conformando para {target_w}x{target_h} @ {target_fps}fps...")
151
- clip = VideoFileClip(video_path)
152
- conformed_clip = clip.resize(height=target_h) if (clip.w / clip.h) < (target_w / target_h) else clip.resize(width=target_w)
153
- conformed_clip = conformed_clip.crop(x_center=conformed_clip.w/2, y_center=conformed_clip.h/2, width=target_w, height=target_h)
154
- conformed_clip = conformed_clip.set_fps(target_fps)
155
- with tempfile.NamedTemporaryFile(suffix="_conformed.mp4", delete=False) as tmp:
156
- conformed_video_path = tmp.name
157
- conformed_clip.write_videofile(conformed_video_path, codec="libx264", audio=False, logger=None, threads=os.cpu_count() or 1)
158
- clip.close()
159
- print(f"[WanManager] Vídeo conformado salvo em: {conformed_video_path}")
160
- return conformed_video_path
161
-
162
- def generate_video(
163
- self,
164
- convergent_img: Image.Image,
165
- causal_video_path: Optional[str] = None,
166
- causal_img: Optional[Image.Image] = None,
167
- handler_img: Optional[Image.Image] = None,
168
- total_frames: Optional[int] = 33,
169
- handler_frame: Optional[int] = 17,
170
- handler_weight: float = 1.0,
171
- causal_weight: float = 1.0,
172
- fps: Optional[int] = 16,
173
- resolution: Optional[str] = "480x832",
174
- prompt: str = "",
175
- negative_prompt: Optional[str] = None,
176
- steps: int = 8,
177
- guidance_scale: float = 1.0,
178
- guidance_scale_2: float = 1.0,
179
- seed: int = 42,
180
- randomize_seed: bool = True,
181
- ):
182
- final_handler_img, final_causal_img = handler_img, causal_img
183
- final_total_frames, final_fps, final_resolution = total_frames, fps, resolution
184
- final_handler_frame, final_causal_weight, final_handler_weight = handler_frame, causal_weight, handler_weight
185
- conformed_video_path = None
186
-
187
- if causal_video_path and os.path.exists(causal_video_path):
188
- print(f"[WanManager] INFO: Modo 'Causal Video' ativado com o arquivo: {causal_video_path}")
189
- target_h, target_w = [int(x) for x in resolution.split('x')]
190
- conformed_video_path = self._preprocess_causal_video(causal_video_path, fps, target_w, target_h)
191
- reader = imageio.get_reader(conformed_video_path)
192
- video_frame_count = reader.count_frames()
193
- if video_frame_count < 25:
194
- reader.close()
195
- raise ValueError(f"O vídeo conformado deve ter pelo menos 25 frames. Tem apenas {video_frame_count}.")
196
- print("[WanManager] INFO: Extraindo frames de controle do vídeo conformado...")
197
- causal_img_from_video_np = reader.get_data(video_frame_count - 25)
198
- final_causal_img = Image.fromarray(causal_img_from_video_np)
199
- handler_img_from_video_np = reader.get_data(video_frame_count - 1)
200
- final_handler_img = Image.fromarray(handler_img_from_video_np)
201
- reader.close()
202
- final_total_frames, final_fps, final_resolution = video_frame_count, fps, resolution
203
- final_handler_frame, final_handler_weight, final_causal_weight = 24, 1.0, causal_weight
204
- else:
205
- print("[WanManager] INFO: Modo 'Image to Video' padrão ativado.")
206
- if convergent_img is None or causal_img is None:
207
- raise ValueError("A imagem convergente (inicial) e a imagem causal (final) são obrigatórias no modo I2V.")
208
-
209
- target_h, target_w = [int(x) for x in final_resolution.split('x')]
210
-
211
- processed_convergent = self.resize_and_crop_to_match(convergent_img, target_w, target_h)
212
- processed_causal = self.resize_and_crop_to_match(final_causal_img, target_w, target_h)
213
- processed_handler = self.resize_and_crop_to_match(final_handler_img, target_w, target_h) if final_handler_img else None
214
-
215
- clamped_frames = int(np.clip(final_total_frames, self.MIN_FRAMES_MODEL, self.MAX_FRAMES_MODEL))
216
- sf_t = getattr(self.pipe, "vae_scale_factor_temporal", 4)
217
- num_frames = ((clamped_frames - 1) // sf_t * sf_t) + 1
218
-
219
- print(f"[WanManager] INFO: Total de frames final para a pipeline é {num_frames}.")
220
-
221
- current_seed = random.randint(0, np.iinfo(np.int32).max) if randomize_seed else int(seed)
222
-
223
- corrected_handler_index = None
224
- if processed_handler is not None and final_handler_frame is not None:
225
- min_safe_frame, max_safe_frame = 9, num_frames - 9
226
- if causal_video_path:
227
- corrected_handler_index = max(min_safe_frame, min(final_handler_frame, max_safe_frame))
228
- else:
229
- block_index = round(final_handler_frame / 8)
230
- aligned_frame = block_index * 8 + 1
231
- corrected_handler_index = max(min_safe_frame, min(aligned_frame, max_safe_frame))
232
- print(f"[WanManager] INFO: Handler Frame final validado para {corrected_handler_index}.")
233
-
234
- print("[WanManager] Preparando tensores e timesteps para a geração...")
235
-
236
- transformer_dtype = self.pipe.transformer.dtype
237
- generator = torch.Generator(device="cpu").manual_seed(current_seed)
238
-
239
- prompt_embeds, negative_prompt_embeds = self.pipe.encode_prompt(prompt=prompt, negative_prompt=negative_prompt or self.default_negative_prompt)
240
- prompt_embeds = prompt_embeds.to(transformer_dtype)
241
- if negative_prompt_embeds is not None:
242
- negative_prompt_embeds = negative_prompt_embeds.to(transformer_dtype)
243
-
244
- image_processed = self.pipe.video_processor.preprocess(processed_convergent, height=target_h, width=target_w)
245
- causal_img_processed = self.pipe.video_processor.preprocess(processed_causal, height=target_h, width=target_w)
246
- handler_img_processed = self.pipe.video_processor.preprocess(processed_handler, height=target_h, width=target_w) if processed_handler else None
247
-
248
- latents_outputs = self.pipe.prepare_latents(
249
- image=image_processed, batch_size=1, num_channels_latents=self.pipe.vae.config.z_dim,
250
- height=target_h, width=target_w, num_frames=num_frames, dtype=torch.float32, generator=generator,
251
- causal_img=causal_img_processed, handler_img=handler_img_processed,
252
- handler_frame_index=corrected_handler_index, handler_weight=final_handler_weight, causal_weight=final_causal_weight
253
- )
254
- latents, condition = latents_outputs
255
-
256
- self.pipe.scheduler.set_timesteps(steps, device=latents.device)
257
- timesteps = self.pipe.scheduler.timesteps
258
-
259
- denoise_logger = DenoiseStepLogger(self.pipe)
260
- denoising_step_videos = []
261
-
262
- with torch.no_grad():
263
- for i, t in enumerate(timesteps):
264
- print(f"[WanManager] Executando passo de denoising {i+1}/{steps}...")
265
- latent_model_input = torch.cat([latents, condition], dim=1).to(transformer_dtype)
266
-
267
- noise_pred_uncond = self.pipe.transformer(latent_model_input, t, encoder_hidden_states=negative_prompt_embeds).sample
268
- noise_pred_text = self.pipe.transformer(latent_model_input, t, encoder_hidden_states=prompt_embeds).sample
269
-
270
- noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
271
- latents = self.pipe.scheduler.step(noise_pred, t, latents).prev_sample
272
-
273
- video_frames_np = denoise_logger.decode_latents_to_video_tensor(latents)
274
- with tempfile.NamedTemporaryFile(suffix=f"_step_{i+1}.mp4", delete=False) as tmp:
275
- step_video_path = tmp.name
276
- export_to_video(video_frames_np[0], step_video_path, fps=final_fps)
277
- denoising_step_videos.append(step_video_path)
278
-
279
- yield None, None, denoising_step_videos
280
-
281
- print("[WanManager] Denoising completo. Processando o vídeo final...")
282
- final_video_frames_np = denoise_logger.decode_latents_to_video_tensor(latents)
283
-
284
- with tempfile.NamedTemporaryFile(suffix="_generated_clip.mp4", delete=False) as tmp:
285
- generated_clip_path = tmp.name
286
- export_to_video(final_video_frames_np[0], generated_clip_path, fps=final_fps)
287
-
288
- final_video_path = generated_clip_path
289
- if conformed_video_path:
290
- print("[WanManager] INFO: Modo Causal Video: iniciando concatenação final...")
291
- input_clip = VideoFileClip(conformed_video_path)
292
- generated_clip = VideoFileClip(generated_clip_path)
293
- duration_to_cut = 25 / input_clip.fps
294
- if input_clip.duration > duration_to_cut:
295
- prefix_clip = input_clip.subclip(0, input_clip.duration - duration_to_cut)
296
- final_clip = concatenate_videoclips([prefix_clip, generated_clip])
297
- else:
298
- final_clip = generated_clip
299
- with tempfile.NamedTemporaryFile(suffix="_final.mp4", delete=False) as tmp:
300
- final_video_path = tmp.name
301
- final_clip.write_videofile(final_video_path, codec="libx264", audio=False, logger=None, threads=os.cpu_count() or 1)
302
- input_clip.close()
303
- generated_clip.close()
304
- os.remove(conformed_video_path)
305
- os.remove(generated_clip_path)
306
- print(f"[WanManager] INFO: Vídeo final concatenado salvo em: {final_video_path}")
307
-
308
- yield final_video_path, current_seed, denoising_step_videos
 
1
+ # =============================================================================
2
+ # DOCKERFILE - ADUC-SDR: AI Video Suite v4.1.0
3
+ # Base: CUDA 12.8.0 | PyTorch 2.8.0+cu128
4
+ # Otimizado para Hugging Face Spaces com 8x NVIDIA L40S GPUs
5
+ # =============================================================================
6
+
7
+ # Base CUDA 12.8.0
8
+ FROM nvidia/cuda:12.8.0-devel-ubuntu22.04
9
+
10
+ # =============================================================================
11
+ # METADADOS
12
+ # =============================================================================
13
+ LABEL maintainer="Carlos Rodrigues dos Santos & Development Partner"
14
+ LABEL description="ADUC-SDR: Production-Ready Multi-GPU AI Video Generation Suite with Wan2.2, SeedVR, LTX, MMAudio"
15
+ LABEL version="4.1.0"
16
+ LABEL cuda_version="12.8.0"
17
+ LABEL python_version="3.10"
18
+ LABEL pytorch_version="2.8.0+cu128"
19
+ LABEL gpu_optimized_for="8x_NVIDIA_L40S"
20
+
21
+ # Otimizações específicas do sistema
22
+ ENV OMP_NUM_THREADS=8
23
+ ENV MKL_NUM_THREADS=8
24
+ ENV CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
25
+ ENV CUDA_DEVICE_MAX_CONNECTIONS=32
26
+
27
+ # Cache e Memory Management
28
+ # Unificar PYTORCH_CUDA_ALLOC_CONF em uma linha
29
+ ENV PYTORCH_CUDA_ALLOC_CONF=max_split_size_mb:512,garbage_collection_threshold:0.8
30
+ ENV CUDA_MODULE_LOADING=LAZY
31
+ ENV CUDA_DEVICE_MAX_CONNECTIONS=32
32
+ ENV CUDA_DEVICE_ORDER=PCI_BUS_ID
33
+
34
+
35
+
36
+ # Constantes de Performance para Build
37
+ ENV CUDA_CACHE_MAXSIZE=2147483648
38
+ ENV CUDA_CACHE_DISABLE=0
39
+ ENV TORCH_HOME=/app/.cache/torch
40
+ ENV HF_HOME=/app/.cache/huggingface
41
+ ENV HF_DATASETS_CACHE=/app/.cache/datasets
42
+
43
+ # Constantes de Memory Management
44
+ ENV PYTORCH_CUDA_ALLOC_CONF=max_split_size_mb:512,garbage_collection_threshold:0.8
45
+ ENV CUDA_LAUNCH_BLOCKING=0
46
+ ENV CUDA_DEVICE_ORDER=PCI_BUS_ID
47
+
48
+ # Constantes de Model Loading
49
+ ENV TRANSFORMERS_CACHE=/app/.cache/transformers
50
+ ENV DIFFUSERS_CACHE=/app/.cache/diffusers
51
+ ENV MODEL_CACHE_STRATEGY=aggressive
52
+
53
+
54
+ # Melhorias de cache/download
55
+ ENV HF_HOME=/app/.cache/huggingface
56
+ ENV TRANSFORMERS_CACHE=/app/.cache/transformers
57
+ ENV DIFFUSERS_CACHE=/app/.cache/diffusers
58
+ ENV HF_DATASETS_CACHE=/app/.cache/datasets
59
+ ENV HF_HUB_ENABLE_HF_TRANSFER=1
60
+ ENV TOKENIZERS_PARALLELISM=false
61
+
62
+
63
+
64
+ # =============================================================================
65
+ # VARIÁVEIS DE AMBIENTE GLOBAIS
66
+ # =============================================================================
67
+ ENV DEBIAN_FRONTEND=noninteractive
68
+ ENV TZ=UTC
69
+ ENV LANG=C.UTF-8
70
+ ENV LC_ALL=C.UTF-8
71
+ ENV PYTHONUNBUFFERED=1
72
+ ENV PYTHONDONTWRITEBYTECODE=1
73
+ ENV PIP_NO_CACHE_DIR=1
74
+ ENV PIP_DISABLE_PIP_VERSION_CHECK=1
75
+
76
+ # Otimizações de CUDA e Build
77
+ ENV NVIDIA_VISIBLE_DEVICES=all
78
+ ENV NVIDIA_DRIVER_CAPABILITIES=compute,utility
79
+ ENV TORCH_CUDA_ARCH_LIST="8.9"
80
+ ENV MAX_JOBS=90
81
+
82
+ # Caminhos da Aplicação
83
+ ENV APP_HOME=/app
84
+ WORKDIR $APP_HOME
85
+
86
+ # =============================================================================
87
+ # PACOTES DO SISTEMA E PYTHON 3.10
88
+ # =============================================================================
89
+ RUN apt-get update && \
90
+ apt-get install -y --no-install-recommends \
91
+ build-essential cmake git git-lfs curl wget ffmpeg ninja-build \
92
+ python3.10 python3.10-dev python3.10-distutils python3-pip \
93
+ && apt-get clean && rm -rf /var/lib/apt/lists/*
94
+
95
+ RUN ln -sf /usr/bin/python3.10 /usr/bin/python3 && \
96
+ ln -sf /usr/bin/python3.10 /usr/bin/python && \
97
+ python3 -m pip install --upgrade pip
98
+
99
+ # =============================================================================
100
+ # INSTALAÇÃO DE BIBLIOTECAS DE ALTA PERFORMANCE
101
+ # =============================================================================
102
+
103
+ # 1. Instala PyTorch 2.8.0 e ferramentas de build
104
+ RUN pip -v install \
105
+ torch>=2.8.0+cu128 \
106
+ torchvision \
107
+ torchaudio \
108
+ --index-url https://download.pytorch.org/whl/cu128
109
 
110
+ RUN pip install \
111
+ packaging \
112
+ ninja \
113
+ cmake \
114
+ pybind11 \
115
+ scikit-build \
116
+ cython \
117
+ hf_transfer \
118
+ numpy==1.24.4
119
+
120
+
121
+ # =============================================================================
122
+ # CLONAGEM E INSTALAÇÃO DOS REPOSITÓRIOS DA APLICAÇÃO
123
+ # =============================================================================
124
+
125
+ RUN git clone https://github.com/Wan-Video/Wan2.2.git && \
126
+ #cd Wan2.2 && pip install -v -r requirements.txt && pip install -v -r requirements_s2v.txt && cd .. && \
127
+ echo "Copiando 'wan' para /app/wan..." && \
128
+ cp -r Wan2.2/wan /app/wan
129
+
130
+ # VINCIE
131
+ RUN git clone https://github.com/bytedance-seed/VINCIE.git && \
132
+ #cd VINCIE && pip install -v -r requirements.txt && cd .. && \
133
+ #echo "Copiando módulos do SeedVR para /app/..." && \
134
+ #cp /VINCIE/generate.py /app/VINCIE/ 2>/dev/null || echo "vincie_service.py não encontrado"
135
+ #cp -r VINCIE /app/VINCIE && \
136
+ #cp -r VINCIE/projects /app/projects && \
137
+ #cp -r VINCIE/data /app/data && \
138
+ cp -r VINCIE/configs/. /app/configs/
139
+
140
+
141
+ # SeedVR
142
+ RUN git clone https://github.com/bytedance-seed/SeedVR.git && \
143
+ #cd SeedVR && pip install -v -r requirements.txt && cd .. && \
144
+ #echo "Copiando módulos do SeedVR para /app/..." && \
145
+ #cp -r SeedVR/common /app/common && \
146
+ #cp -r SeedVR/projects /app/projects && \
147
+ #cp -r SeedVR/data /app/data && \
148
+ cp -r SeedVR/configs_3b /app/configs_3b
149
+
150
+
151
+ # MMAudio
152
+ #RUN git clone https://github.com/hkchengrex/MMAudio.git && \
153
+ # cd MMAudio && pip install -v -e . && cd .. && \
154
+ # echo "Copiando 'mmaudio' para /app/mmaudio..." && \
155
+ # cp -r MMAudio/mmaudio /app/mmaudio
156
+
157
+ # LTX-Video
158
+ RUN git clone https://github.com/Lightricks/LTX-Video.git && \
159
+ #cd LTX-Video && pip install -v -e .[inference] && cd .. && \
160
+ echo "Copiando 'ltx_video' para /app/ltx_video..." && \
161
+ cp -r LTX-Video/ltx_video /app/ltx_video
162
+
163
+ # opcionais
164
+ RUN pip uninstall -y bitsandbytes triton && \
165
+ pip install -v bitsandbytes --index-url https://pypi.org/simple/ && \
166
+ pip install -v triton
167
+
168
+ # =============================================================================
169
+ # INSTALAÇÃO DO RESTANTE DAS DEPENDÊNCIAS
170
+ # =============================================================================
171
+ COPY requirements.txt .
172
+
173
+ # Instala os pacotes restantes do requirements.txt
174
+ # A linha do flash-attention no arquivo será ignorada se já estiver instalado, mas é bom limpá-la.
175
+ RUN pip install -r requirements.txt
176
+
177
+
178
+ # PyTorch cu128 (fixar versões consistentes do mesmo canal)
179
+ RUN pip install --index-url https://download.pytorch.org/whl/cu128 \
180
+ torch==2.8.0+cu128 torchvision>=0.19.0+cu128 torchaudio>=2.8.0+cu128
181
+
182
+
183
+
184
+ # =============================================================================
185
+ # COPIA O CÓDIGO DA APLICAÇÃO E CONFIGURA PERMISSÕES
186
+ # =============================================================================
187
+ COPY . .
188
+
189
+ RUN useradd -m -u 1000 -s /bash appuser && \
190
+ chown -R appuser:appuser $APP_HOME && \
191
+ mkdir -p /app && chown -R appuser:appuser /app
192
+
193
+ USER appuser
194
+
195
+ # =============================================================================
196
+ # PONTO DE ENTRADA
197
+ # =============================================================================
198
+ RUN chmod +x ./start.sh
199
+
200
+ ENTRYPOINT ["./start.sh"]
201
+ CMD ["gradio"]