Spaces:
Running
Running
File size: 14,163 Bytes
bbf45d0 961c6fe b06975a c0b7e37 8d43079 961c6fe 97da54a c0b7e37 afd7356 b06975a 7064a74 4517d15 961c6fe 59d14c6 afd7356 961c6fe afd7356 d858aa5 97da54a f38cb18 f0e2fd8 f38cb18 9ef6d86 d858aa5 afd7356 c0b7e37 961c6fe 97da54a 961c6fe edcb716 961c6fe 9c451ee f38cb18 4517d15 b06975a 97da54a 4517d15 97da54a 4517d15 f38cb18 edcb716 9ef6d86 edcb716 34c8618 edcb716 8d43079 edcb716 9ef6d86 b06975a 961c6fe b06975a 0c6bf95 f0e2fd8 961c6fe f0e2fd8 9c451ee f0e2fd8 961c6fe 9c451ee 4517d15 961c6fe bbf45d0 ae21931 6504db8 0421d9a 535bf1f 0421d9a 34c8618 ae21931 961c6fe f0e2fd8 d858aa5 eec69ec 98b7de8 f0e2fd8 23d71de 9062ccf 23d71de 59d14c6 47e0cf9 6504db8 8327f21 34c8618 8327f21 72bf03d f38cb18 9062ccf 8d43079 9ef6d86 9062ccf 23d71de 59d14c6 afd7356 f0e2fd8 961c6fe f0e2fd8 c0b7e37 ae21931 c0b7e37 ae21931 c0b7e37 db85dcc 34c8618 8d43079 db85dcc ae21931 34c8618 59d14c6 34c8618 59d14c6 34c8618 961c6fe b72bb50 b06975a 34c8618 961c6fe afd7356 961c6fe b72bb50 34c8618 4517d15 961c6fe b72bb50 34c8618 b72bb50 589d405 4d0811f 961c6fe 9ef6d86 34c8618 d858aa5 b06975a 34c8618 4517d15 f38cb18 34c8618 f38cb18 9c451ee b06975a 961c6fe 34c8618 afd7356 34c8618 961c6fe 34c8618 afd7356 bbf45d0 34c8618 bbf45d0 d858aa5 348eecc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 |
import gradio as gr
import pandas as pd
import plotly.express as px
import time
from datasets import load_dataset
# Using the stable, community-built RangeSlider component
from gradio_rangeslider import RangeSlider
import datetime # Import the datetime module
# --- Constants ---
PARAM_CHOICES = ['< 1B', '1B', '5B', '12B', '32B', '64B', '128B', '256B', '> 500B']
PARAM_CHOICES_DEFAULT_INDICES = (0, len(PARAM_CHOICES) - 1)
TOP_K_CHOICES = list(range(5, 51, 5))
HF_DATASET_ID = "evijit/modelverse_daily_data"
TAG_FILTER_CHOICES = [ "Audio & Speech", "Time series", "Robotics", "Music", "Video", "Images", "Text", "Biomedical", "Sciences" ]
PIPELINE_TAGS = [ 'text-generation', 'text-to-image', 'text-classification', 'text2text-generation', 'audio-to-audio', 'feature-extraction', 'image-classification', 'translation', 'reinforcement-learning', 'fill-mask', 'text-to-speech', 'automatic-speech-recognition', 'image-text-to-text', 'token-classification', 'sentence-similarity', 'question-answering', 'image-feature-extraction', 'summarization', 'zero-shot-image-classification', 'object-detection', 'image-segmentation', 'image-to-image', 'image-to-text', 'audio-classification', 'visual-question-answering', 'text-to-video', 'zero-shot-classification', 'depth-estimation', 'text-ranking', 'image-to-video', 'multiple-choice', 'unconditional-image-generation', 'video-classification', 'text-to-audio', 'time-series-forecasting', 'any-to-any', 'video-text-to-text', 'table-question-answering' ]
def load_models_data():
overall_start_time = time.time()
print(f"Attempting to load dataset from Hugging Face Hub: {HF_DATASET_ID}")
try:
dataset_dict = load_dataset(HF_DATASET_ID)
df = dataset_dict[list(dataset_dict.keys())[0]].to_pandas()
if 'params' in df.columns:
df['params'] = pd.to_numeric(df['params'], errors='coerce').fillna(-1)
else:
df['params'] = -1
if 'createdAt' in df.columns:
df['createdAt'] = pd.to_datetime(df['createdAt'], errors='coerce')
msg = f"Successfully loaded dataset in {time.time() - overall_start_time:.2f}s."
print(msg)
return df, True, msg
except Exception as e:
err_msg = f"Failed to load dataset. Error: {e}"
print(err_msg)
return pd.DataFrame(), False, err_msg
def get_param_range_values(param_range_labels):
min_label, max_label = param_range_labels
min_val = 0.0 if '<' in min_label else float(min_label.replace('B', ''))
max_val = float('inf') if '>' in max_label else float(max_label.replace('B', ''))
return min_val, max_val
def make_treemap_data(df, count_by, top_k=25, tag_filter=None, pipeline_filter=None, param_range=None, skip_orgs=None, include_unknown_param_size=True, created_after_date: float = None):
if df is None or df.empty: return pd.DataFrame()
filtered_df = df.copy()
if not include_unknown_param_size and 'params' in filtered_df.columns:
filtered_df = filtered_df[filtered_df['params'] != -1]
col_map = { "Audio & Speech": "is_audio_speech", "Music": "has_music", "Robotics": "has_robot", "Biomedical": "is_biomed", "Time series": "has_series", "Sciences": "has_science", "Video": "has_video", "Images": "has_image", "Text": "has_text" }
if tag_filter and tag_filter in col_map and col_map[tag_filter] in filtered_df.columns:
filtered_df = filtered_df[filtered_df[col_map[tag_filter]]]
if pipeline_filter and "pipeline_tag" in filtered_df.columns:
filtered_df = filtered_df[filtered_df["pipeline_tag"].astype(str) == pipeline_filter]
if param_range:
min_params, max_params = get_param_range_values(param_range)
is_default_range = (param_range[0] == PARAM_CHOICES[0] and param_range[1] == PARAM_CHOICES[-1])
if not is_default_range and 'params' in filtered_df.columns:
if min_params is not None: filtered_df = filtered_df[filtered_df['params'] >= min_params]
if max_params is not None and max_params != float('inf'): filtered_df = filtered_df[filtered_df['params'] < max_params]
# --- CORRECTED DATE FILTER LOGIC FOR FLOAT TIMESTAMP ---
if created_after_date is not None and 'createdAt' in filtered_df.columns:
# Drop rows where 'createdAt' could not be parsed to avoid errors
filtered_df = filtered_df.dropna(subset=['createdAt'])
# Convert the Unix timestamp (float) from the UI into a Python date object
filter_date = datetime.datetime.fromtimestamp(created_after_date).date()
# Compare its date part with the date part of the 'createdAt' column.
filtered_df = filtered_df[filtered_df['createdAt'].dt.date > filter_date]
if skip_orgs and len(skip_orgs) > 0 and "organization" in filtered_df.columns:
filtered_df = filtered_df[~filtered_df["organization"].isin(skip_orgs)]
if filtered_df.empty: return pd.DataFrame()
if count_by not in filtered_df.columns: filtered_df[count_by] = 0.0
filtered_df[count_by] = pd.to_numeric(filtered_df[count_by], errors='coerce').fillna(0.0)
org_totals = filtered_df.groupby("organization")[count_by].sum().nlargest(top_k, keep='first')
top_orgs_list = org_totals.index.tolist()
treemap_data = filtered_df[filtered_df["organization"].isin(top_orgs_list)][["id", "organization", count_by]].copy()
treemap_data["root"] = "models"
return treemap_data
def create_treemap(treemap_data, count_by, title=None):
if treemap_data.empty:
fig = px.treemap(names=["No data matches filters"], parents=[""], values=[1])
fig.update_layout(title="No data matches the selected filters", margin=dict(t=50, l=25, r=25, b=25))
return fig
fig = px.treemap(treemap_data, path=["root", "organization", "id"], values=count_by, title=title, color_discrete_sequence=px.colors.qualitative.Plotly)
fig.update_layout(margin=dict(t=50, l=25, r=25, b=25))
fig.update_traces(textinfo="label+value+percent root", hovertemplate="<b>%{label}</b><br>%{value:,} " + count_by + "<br>%{percentRoot:.2%} of total<extra></extra>")
return fig
custom_css = """
.model-parameters-group > .block {
background: none !important;
border: none !important;
box-shadow: none !important;
}
#param-slider-wrapper .head,
#param-slider-wrapper div[data-testid="range-slider"] > span {
display: none !important;
}
"""
with gr.Blocks(title="🤗 ModelVerse Explorer", fill_width=True, css=custom_css) as demo:
models_data_state = gr.State(pd.DataFrame())
loading_complete_state = gr.State(False)
with gr.Row():
gr.Markdown("# 🤗 ModelVerse Explorer")
with gr.Row():
with gr.Column(scale=1):
count_by_dropdown = gr.Dropdown(label="Metric", choices=[("Downloads (last 30 days)", "downloads"), ("Downloads (All Time)", "downloadsAllTime"), ("Likes", "likes")], value="downloads")
filter_choice_radio = gr.Radio(label="Filter Type", choices=["None", "Tag Filter", "Pipeline Filter"], value="None")
tag_filter_dropdown = gr.Dropdown(label="Select Tag", choices=TAG_FILTER_CHOICES, value=None, visible=False)
pipeline_filter_dropdown = gr.Dropdown(label="Select Pipeline Tag", choices=PIPELINE_TAGS, value=None, visible=False)
with gr.Group(elem_classes="model-parameters-group"):
gr.Markdown("<div style='font-weight: 500;'>Model Parameters</div>")
param_range_slider = RangeSlider(
minimum=0, maximum=len(PARAM_CHOICES) - 1, value=PARAM_CHOICES_DEFAULT_INDICES,
step=1, label=None, show_label=False, elem_id="param-slider-wrapper"
)
param_range_display = gr.Markdown(f"Range: `{PARAM_CHOICES[0]}` to `{PARAM_CHOICES[-1]}`")
include_unknown_params_checkbox = gr.Checkbox(label="Include models with unknown parameter size", value=True)
created_after_datepicker = gr.DateTime(label="Created After")
top_k_dropdown = gr.Dropdown(label="Number of Top Organizations", choices=TOP_K_CHOICES, value=25)
skip_orgs_textbox = gr.Textbox(label="Organizations to Skip (comma-separated)", value="TheBloke,MaziyarPanahi,unsloth,modularai,Gensyn,bartowski")
generate_plot_button = gr.Button(value="Generate Plot", variant="primary", interactive=False)
with gr.Column(scale=3):
plot_output = gr.Plot()
status_message_md = gr.Markdown("Initializing...")
data_info_md = gr.Markdown("")
def update_param_display(value: tuple):
min_idx, max_idx = int(value[0]), int(value[1])
return f"Range: `{PARAM_CHOICES[min_idx]}` to `{PARAM_CHOICES[max_idx]}`"
def _toggle_unknown_params_checkbox(param_range_indices):
min_idx, max_idx = int(param_range_indices[0]), int(param_range_indices[1])
is_default_range = (min_idx == PARAM_CHOICES_DEFAULT_INDICES[0] and max_idx == PARAM_CHOICES_DEFAULT_INDICES[1])
if not is_default_range:
return gr.update(interactive=False, value=False)
else:
return gr.update(interactive=True)
param_range_slider.change(update_param_display, param_range_slider, param_range_display)
param_range_slider.change(_toggle_unknown_params_checkbox, param_range_slider, include_unknown_params_checkbox)
loading_complete_state.change(lambda is_loaded: gr.update(interactive=is_loaded), loading_complete_state, generate_plot_button)
filter_choice_radio.change(lambda choice: (gr.update(visible=choice == "Tag Filter"), gr.update(visible=choice == "Pipeline Filter")),
filter_choice_radio, [tag_filter_dropdown, pipeline_filter_dropdown])
def load_and_generate_initial_plot(progress=gr.Progress()):
progress(0, desc=f"Loading dataset '{HF_DATASET_ID}'...")
current_df, load_success_flag, status_msg_from_load = pd.DataFrame(), False, ""
try:
current_df, load_success_flag, status_msg_from_load = load_models_data()
if load_success_flag:
progress(0.5, desc="Processing data...")
ts = pd.to_datetime(current_df['data_download_timestamp'].iloc[0], utc=True) if 'data_download_timestamp' in current_df.columns and pd.notna(current_df['data_download_timestamp'].iloc[0]) else None
date_display = ts.strftime('%B %d, %Y, %H:%M:%S %Z') if ts else "Pre-processed (date unavailable)"
param_count = (current_df['params'] != -1).sum()
data_info_text = (f"### Data Information\n- Source: `{HF_DATASET_ID}`\n- Status: {status_msg_from_load}\n"
f"- Total models loaded: {len(current_df):,}\n- Models with known parameter counts: {param_count:,}\n"
f"- Models with unknown parameter counts: {len(current_df) - param_count:,}\n- Data as of: {date_display}\n")
else:
data_info_text = f"### Data Load Failed\n- {status_msg_from_load}"
except Exception as e:
status_msg_from_load = f"An unexpected error occurred: {str(e)}"
data_info_text = f"### Critical Error\n- {status_msg_from_load}"
print(f"Critical error in load_and_generate_initial_plot: {e}")
progress(0.6, desc="Generating initial plot...")
initial_plot, initial_status = ui_generate_plot_controller(
"downloads", "None", None, None, PARAM_CHOICES_DEFAULT_INDICES, 25,
"TheBloke,MaziyarPanahi,unsloth,modularai,Gensyn,bartowski", True, None, current_df, progress
)
return current_df, load_success_flag, data_info_text, initial_status, initial_plot
def ui_generate_plot_controller(metric_choice, filter_type, tag_choice, pipeline_choice,
param_range_indices, k_orgs, skip_orgs_input, include_unknown_param_size_flag,
created_after_date, df_current_models, progress=gr.Progress()):
if df_current_models.empty:
return create_treemap(pd.DataFrame(), metric_choice, "Error: Model Data Not Loaded"), "Model data is not loaded."
progress(0.1, desc="Preparing data...")
param_labels = [PARAM_CHOICES[int(param_range_indices[0])], PARAM_CHOICES[int(param_range_indices[1])]]
treemap_df = make_treemap_data(
df_current_models, metric_choice, k_orgs,
tag_choice if filter_type == "Tag Filter" else None,
pipeline_choice if filter_type == "Pipeline Filter" else None,
param_labels, [org.strip() for org in skip_orgs_input.split(',') if org.strip()],
include_unknown_param_size_flag, created_after_date
)
progress(0.7, desc="Generating plot...")
title_labels = {"downloads": "Downloads (last 30 days)", "downloadsAllTime": "Downloads (All Time)", "likes": "Likes"}
plotly_fig = create_treemap(treemap_df, metric_choice, f"HuggingFace Models - {title_labels.get(metric_choice, metric_choice)} by Organization")
plot_stats_md = (f"## Plot Statistics\n- **Models shown**: {len(treemap_df['id'].unique()):,}\n"
f"- **Total {metric_choice}**: {int(treemap_df[metric_choice].sum()):,}") if not treemap_df.empty else "No data matches the selected filters."
return plotly_fig, plot_stats_md
demo.load(load_and_generate_initial_plot, None, [models_data_state, loading_complete_state, data_info_md, status_message_md, plot_output])
generate_plot_button.click(
ui_generate_plot_controller,
[count_by_dropdown, filter_choice_radio, tag_filter_dropdown, pipeline_filter_dropdown,
param_range_slider, top_k_dropdown, skip_orgs_textbox, include_unknown_params_checkbox,
created_after_datepicker, models_data_state],
[plot_output, status_message_md]
)
if __name__ == "__main__":
print(f"Application starting...")
demo.queue().launch() |