Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Commit
·
ab4ab85
1
Parent(s):
b2f750c
Update dataset configurations and descriptions for COCO 2014 and SA-1B; refactor file pattern generation in examples.py
Browse files- backend/config.py +49 -4
- backend/descriptions.py +8 -1
- backend/examples.py +11 -16
backend/config.py
CHANGED
|
@@ -79,7 +79,47 @@ DATASET_CONFIGS = {
|
|
| 79 |
"shush",
|
| 80 |
],
|
| 81 |
},
|
| 82 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
"type": "image",
|
| 84 |
"path": ABS_DATASET_PATH,
|
| 85 |
"first_cols": ["psnr", "ssim", "lpips", "decoder_time"],
|
|
@@ -164,14 +204,19 @@ DATASET_CONFIGS = {
|
|
| 164 |
EXAMPLE_CONFIGS = {
|
| 165 |
"audio": {
|
| 166 |
"type": "audio",
|
| 167 |
-
"dataset_name": "
|
| 168 |
"path": ABS_DATASET_PATH,
|
| 169 |
"db_key": "voxpopuli",
|
| 170 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 171 |
"image": {
|
| 172 |
-
"dataset_name": "
|
| 173 |
"path": ABS_DATASET_PATH,
|
| 174 |
-
"db_key": "
|
| 175 |
},
|
| 176 |
"video": {
|
| 177 |
"dataset_name": "sav_val_full_v2",
|
|
|
|
| 79 |
"shush",
|
| 80 |
],
|
| 81 |
},
|
| 82 |
+
"val2014_1k_v2/image": {
|
| 83 |
+
"type": "image",
|
| 84 |
+
"path": ABS_DATASET_PATH,
|
| 85 |
+
"first_cols": ["psnr", "ssim", "lpips", "decoder_time"],
|
| 86 |
+
"attack_scores": ["bit_acc", "log10_p_value", "TPR", "FPR"],
|
| 87 |
+
"categories": {
|
| 88 |
+
"proportion": "Geometric",
|
| 89 |
+
"collage": "Inpainting",
|
| 90 |
+
"center_crop": "Geometric",
|
| 91 |
+
"rotate": "Geometric",
|
| 92 |
+
"jpeg": "Compression",
|
| 93 |
+
"brightness": "Visual",
|
| 94 |
+
"contrast": "Visual",
|
| 95 |
+
"saturation": "Visual",
|
| 96 |
+
"sharpness": "Visual",
|
| 97 |
+
"resize": "Geometric",
|
| 98 |
+
"overlay_text": "Inpainting",
|
| 99 |
+
"hflip": "Geometric",
|
| 100 |
+
"perspective": "Geometric",
|
| 101 |
+
"median_filter": "Visual",
|
| 102 |
+
"hue": "Visual",
|
| 103 |
+
"gaussian_blur": "Visual",
|
| 104 |
+
"comb": "Mixed",
|
| 105 |
+
"avg": "Averages",
|
| 106 |
+
"none": "Baseline",
|
| 107 |
+
},
|
| 108 |
+
"attacks_with_variations": [
|
| 109 |
+
"center_crop",
|
| 110 |
+
"jpeg",
|
| 111 |
+
"brightness",
|
| 112 |
+
"contrast",
|
| 113 |
+
"saturation",
|
| 114 |
+
"sharpness",
|
| 115 |
+
"resize",
|
| 116 |
+
"perspective",
|
| 117 |
+
"median_filter",
|
| 118 |
+
"hue",
|
| 119 |
+
"gaussian_blur",
|
| 120 |
+
],
|
| 121 |
+
},
|
| 122 |
+
"sa_1b_val_1k/image": {
|
| 123 |
"type": "image",
|
| 124 |
"path": ABS_DATASET_PATH,
|
| 125 |
"first_cols": ["psnr", "ssim", "lpips", "decoder_time"],
|
|
|
|
| 204 |
EXAMPLE_CONFIGS = {
|
| 205 |
"audio": {
|
| 206 |
"type": "audio",
|
| 207 |
+
"dataset_name": "voxpopuli_1k",
|
| 208 |
"path": ABS_DATASET_PATH,
|
| 209 |
"db_key": "voxpopuli",
|
| 210 |
},
|
| 211 |
+
# "image": {
|
| 212 |
+
# "dataset_name": "val2014_1k_v2",
|
| 213 |
+
# "path": ABS_DATASET_PATH,
|
| 214 |
+
# "db_key": "local_val2014",
|
| 215 |
+
# },
|
| 216 |
"image": {
|
| 217 |
+
"dataset_name": "sa_1b_val_1k",
|
| 218 |
"path": ABS_DATASET_PATH,
|
| 219 |
+
"db_key": "local_valid",
|
| 220 |
},
|
| 221 |
"video": {
|
| 222 |
"dataset_name": "sav_val_full_v2",
|
backend/descriptions.py
CHANGED
|
@@ -226,13 +226,20 @@ DATASET_DESCRIPTIONS = {
|
|
| 226 |
"github_link": "",
|
| 227 |
},
|
| 228 |
|
| 229 |
-
"
|
| 230 |
"full_name": "COCO 2014 Validation Set",
|
| 231 |
"description": "The COCO 2014 validation set is a widely used dataset for image watermarking tasks. It contains a diverse set of images with various objects and scenes.",
|
| 232 |
"paper_link": "https://arxiv.org/abs/1405.0312",
|
| 233 |
"github_link": "",
|
| 234 |
},
|
| 235 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 236 |
"sav_val_full_v2/video": {
|
| 237 |
"full_name": "SA-Video Dataset",
|
| 238 |
"description": "The SA-Video dataset is a collection of videos designed for video watermarking tasks. It includes a variety of video content suitable for testing watermarking techniques.",
|
|
|
|
| 226 |
"github_link": "",
|
| 227 |
},
|
| 228 |
|
| 229 |
+
"val2014_1k_v2/image": {
|
| 230 |
"full_name": "COCO 2014 Validation Set",
|
| 231 |
"description": "The COCO 2014 validation set is a widely used dataset for image watermarking tasks. It contains a diverse set of images with various objects and scenes.",
|
| 232 |
"paper_link": "https://arxiv.org/abs/1405.0312",
|
| 233 |
"github_link": "",
|
| 234 |
},
|
| 235 |
|
| 236 |
+
"sa_1b_val_1k/image": {
|
| 237 |
+
"full_name": "Segment Anything 1 Billion",
|
| 238 |
+
"description": "Segment Anything 1 Billion (SA-1B) is a dataset designed for training general-purpose object segmentation models from open world images.",
|
| 239 |
+
"paper_link": "https://arxiv.org/abs/2304.02643",
|
| 240 |
+
"github_link": "",
|
| 241 |
+
},
|
| 242 |
+
|
| 243 |
"sav_val_full_v2/video": {
|
| 244 |
"full_name": "SA-Video Dataset",
|
| 245 |
"description": "The SA-Video dataset is a collection of videos designed for video watermarking tasks. It includes a variety of video content suitable for testing watermarking techniques.",
|
backend/examples.py
CHANGED
|
@@ -95,8 +95,7 @@ def build_description(
|
|
| 95 |
|
| 96 |
def build_infos(abs_path: Path, datatype: str, dataset_name: str, db_key: str):
|
| 97 |
|
| 98 |
-
def generate_file_patterns(prefixes, extensions):
|
| 99 |
-
indices = [0, 1, 3, 4, 5]
|
| 100 |
return [
|
| 101 |
f"{prefix}_{index:05d}.{ext}"
|
| 102 |
for prefix in prefixes
|
|
@@ -108,17 +107,19 @@ def build_infos(abs_path: Path, datatype: str, dataset_name: str, db_key: str):
|
|
| 108 |
quality_metrics = ["snr", "sisnr", "stoi", "pesq"]
|
| 109 |
extensions = ["wav"]
|
| 110 |
datatype_abbr = "audio"
|
| 111 |
-
|
| 112 |
elif datatype == "image":
|
| 113 |
quality_metrics = ["psnr", "ssim", "lpips"]
|
| 114 |
extensions = ["png"]
|
| 115 |
datatype_abbr = "img"
|
| 116 |
-
|
| 117 |
elif datatype == "video":
|
| 118 |
quality_metrics = ["psnr", "ssim", "lpips", "msssim", "vmaf"]
|
| 119 |
extensions = ["mp4"]
|
| 120 |
datatype_abbr = "video"
|
| 121 |
-
|
|
|
|
|
|
|
| 122 |
|
| 123 |
# Determine if eval_results_path is a URL or local file
|
| 124 |
if eval_results_path.startswith("http://") or eval_results_path.startswith(
|
|
@@ -146,7 +147,7 @@ def build_infos(abs_path: Path, datatype: str, dataset_name: str, db_key: str):
|
|
| 146 |
f"wmd_{datatype_abbr}",
|
| 147 |
]
|
| 148 |
|
| 149 |
-
file_patterns = generate_file_patterns(prefixes, extensions)
|
| 150 |
infos = {}
|
| 151 |
for model_name in dataset.keys():
|
| 152 |
model_infos = {}
|
|
@@ -170,16 +171,10 @@ def build_infos(abs_path: Path, datatype: str, dataset_name: str, db_key: str):
|
|
| 170 |
model_infos[attack] = []
|
| 171 |
continue
|
| 172 |
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
]
|
| 178 |
-
else:
|
| 179 |
-
file_paths = [
|
| 180 |
-
f"{abs_path}{dataset_name}_1k/examples/{datatype}/{model_name}/{attack}/{pattern}"
|
| 181 |
-
for pattern in file_patterns
|
| 182 |
-
]
|
| 183 |
|
| 184 |
all_files = []
|
| 185 |
|
|
|
|
| 95 |
|
| 96 |
def build_infos(abs_path: Path, datatype: str, dataset_name: str, db_key: str):
|
| 97 |
|
| 98 |
+
def generate_file_patterns(prefixes, extensions, indices):
|
|
|
|
| 99 |
return [
|
| 100 |
f"{prefix}_{index:05d}.{ext}"
|
| 101 |
for prefix in prefixes
|
|
|
|
| 107 |
quality_metrics = ["snr", "sisnr", "stoi", "pesq"]
|
| 108 |
extensions = ["wav"]
|
| 109 |
datatype_abbr = "audio"
|
| 110 |
+
indices = [0, 1, 3, 4, 5]
|
| 111 |
elif datatype == "image":
|
| 112 |
quality_metrics = ["psnr", "ssim", "lpips"]
|
| 113 |
extensions = ["png"]
|
| 114 |
datatype_abbr = "img"
|
| 115 |
+
indices = list(range(20))
|
| 116 |
elif datatype == "video":
|
| 117 |
quality_metrics = ["psnr", "ssim", "lpips", "msssim", "vmaf"]
|
| 118 |
extensions = ["mp4"]
|
| 119 |
datatype_abbr = "video"
|
| 120 |
+
indices = [0, 1, 3, 4, 5]
|
| 121 |
+
|
| 122 |
+
eval_results_path = abs_path + f"{dataset_name}/examples_eval_results.json"
|
| 123 |
|
| 124 |
# Determine if eval_results_path is a URL or local file
|
| 125 |
if eval_results_path.startswith("http://") or eval_results_path.startswith(
|
|
|
|
| 147 |
f"wmd_{datatype_abbr}",
|
| 148 |
]
|
| 149 |
|
| 150 |
+
file_patterns = generate_file_patterns(prefixes, extensions, indices)
|
| 151 |
infos = {}
|
| 152 |
for model_name in dataset.keys():
|
| 153 |
model_infos = {}
|
|
|
|
| 171 |
model_infos[attack] = []
|
| 172 |
continue
|
| 173 |
|
| 174 |
+
file_paths = [
|
| 175 |
+
f"{abs_path}{dataset_name}/examples/{datatype}/{model_name}/{attack}/{pattern}"
|
| 176 |
+
for pattern in file_patterns
|
| 177 |
+
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 178 |
|
| 179 |
all_files = []
|
| 180 |
|