Upload 3 files
Browse files- app.py +697 -0
- model_class.py +48 -0
- pipeline.py +36 -0
app.py
ADDED
|
@@ -0,0 +1,697 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import numpy as np
|
| 4 |
+
import plotly.express as px
|
| 5 |
+
import plotly.graph_objects as go
|
| 6 |
+
from datetime import datetime
|
| 7 |
+
import json
|
| 8 |
+
import torch
|
| 9 |
+
|
| 10 |
+
# ====================== Utility Functions ======================
|
| 11 |
+
|
| 12 |
+
def simulate_topic_prediction(text):
|
| 13 |
+
"""Topic model prediction - replace with your actual model"""
|
| 14 |
+
topics = ['product', 'customer_service', 'shipping']
|
| 15 |
+
predictions = {}
|
| 16 |
+
|
| 17 |
+
token_result = pipeline.tokenizer(text, return_tensors="pt")
|
| 18 |
+
input_ids = token_result['input_ids']
|
| 19 |
+
attention_mask = token_result['attention_mask']
|
| 20 |
+
|
| 21 |
+
with torch.no_grad():
|
| 22 |
+
outputs = pipeline.aspect_model(input_ids=input_ids, attention_mask=attention_mask)
|
| 23 |
+
|
| 24 |
+
# st.write("Topic Model output:", outputs)
|
| 25 |
+
|
| 26 |
+
# Convert model outputs to probabilities
|
| 27 |
+
# The output is already sigmoid result, use directly
|
| 28 |
+
if hasattr(outputs, 'logits'):
|
| 29 |
+
probs = outputs.logits.squeeze().numpy()
|
| 30 |
+
else:
|
| 31 |
+
probs = outputs.squeeze().numpy()
|
| 32 |
+
|
| 33 |
+
# Create predictions dictionary
|
| 34 |
+
for i, topic in enumerate(topics):
|
| 35 |
+
predictions[topic] = float(probs[i]) if len(probs.shape) > 0 else float(probs)
|
| 36 |
+
|
| 37 |
+
return predictions
|
| 38 |
+
|
| 39 |
+
def simulate_sentiment_prediction(text):
|
| 40 |
+
"""Sentiment prediction - replace with your actual model"""
|
| 41 |
+
sentiments = ['positive', 'neutral', 'negative']
|
| 42 |
+
|
| 43 |
+
token_result = pipeline.tokenizer(text, return_tensors="pt")
|
| 44 |
+
input_ids = token_result['input_ids']
|
| 45 |
+
attention_mask = token_result['attention_mask']
|
| 46 |
+
|
| 47 |
+
with torch.no_grad():
|
| 48 |
+
outputs = pipeline.sentiment_model(input_ids=input_ids, attention_mask=attention_mask)
|
| 49 |
+
|
| 50 |
+
# st.write("Sentiment Model output:", outputs)
|
| 51 |
+
|
| 52 |
+
# Convert model outputs to probabilities
|
| 53 |
+
# The output is already softmax result, use directly
|
| 54 |
+
if hasattr(outputs, 'logits'):
|
| 55 |
+
probs = outputs.logits.squeeze().numpy()
|
| 56 |
+
else:
|
| 57 |
+
probs = outputs.squeeze().numpy()
|
| 58 |
+
|
| 59 |
+
# st.write("Sentiment Model probabilities:", probs)
|
| 60 |
+
# Get the predicted sentiment
|
| 61 |
+
predicted_idx = np.argmax(probs)
|
| 62 |
+
predicted_sentiment = sentiments[predicted_idx]
|
| 63 |
+
confidence = float(probs[predicted_idx])
|
| 64 |
+
|
| 65 |
+
return {
|
| 66 |
+
'sentiment': predicted_sentiment,
|
| 67 |
+
'confidence': confidence,
|
| 68 |
+
'all_probs': {sentiments[i]: float(probs[i]) for i in range(len(sentiments))}
|
| 69 |
+
}
|
| 70 |
+
|
| 71 |
+
def display_predictions(text, topic_predictions, sentiment_prediction):
|
| 72 |
+
"""Display prediction results"""
|
| 73 |
+
st.markdown("---")
|
| 74 |
+
st.subheader("🎯 Classification Results")
|
| 75 |
+
|
| 76 |
+
# Display input text
|
| 77 |
+
st.markdown("**Input Text:**")
|
| 78 |
+
st.info(text)
|
| 79 |
+
|
| 80 |
+
col_topic, col_sentiment = st.columns(2)
|
| 81 |
+
|
| 82 |
+
with col_topic:
|
| 83 |
+
st.markdown("**🏷️ Topic Classification (Multi-label):**")
|
| 84 |
+
|
| 85 |
+
for topic, prob in topic_predictions.items():
|
| 86 |
+
if prob >= 0.5: # Fixed threshold
|
| 87 |
+
confidence_class = "topic-positive" if prob > 0.7 else "topic-neutral"
|
| 88 |
+
emoji = "✅" if prob > 0.7 else "⚠️"
|
| 89 |
+
|
| 90 |
+
result_html = f"""
|
| 91 |
+
<div class="prediction-result {confidence_class}">
|
| 92 |
+
{emoji} <strong>{topic.replace('_', ' ').title()}</strong>
|
| 93 |
+
<br>Confidence: {prob:.2%}
|
| 94 |
+
</div>
|
| 95 |
+
"""
|
| 96 |
+
st.markdown(result_html, unsafe_allow_html=True)
|
| 97 |
+
|
| 98 |
+
# Show chart
|
| 99 |
+
fig_topic = create_topic_chart(topic_predictions)
|
| 100 |
+
st.plotly_chart(fig_topic, use_container_width=True)
|
| 101 |
+
|
| 102 |
+
with col_sentiment:
|
| 103 |
+
st.markdown("**😊 Sentiment Analysis:**")
|
| 104 |
+
|
| 105 |
+
sentiment = sentiment_prediction['sentiment']
|
| 106 |
+
confidence = sentiment_prediction['confidence']
|
| 107 |
+
|
| 108 |
+
sentiment_emoji = {"positive": "😊", "neutral": "😐", "negative": "😞"}
|
| 109 |
+
sentiment_class = f"topic-{sentiment}"
|
| 110 |
+
|
| 111 |
+
result_html = f"""
|
| 112 |
+
<div class="prediction-result {sentiment_class}">
|
| 113 |
+
{sentiment_emoji[sentiment]} <strong>{sentiment.title()}</strong>
|
| 114 |
+
<br>Confidence: {confidence:.2%}
|
| 115 |
+
</div>
|
| 116 |
+
"""
|
| 117 |
+
st.markdown(result_html, unsafe_allow_html=True)
|
| 118 |
+
|
| 119 |
+
# Show chart
|
| 120 |
+
fig_sentiment = create_sentiment_chart(sentiment_prediction)
|
| 121 |
+
st.plotly_chart(fig_sentiment, use_container_width=True)
|
| 122 |
+
|
| 123 |
+
# Store in session state for statistics
|
| 124 |
+
if 'classification_history' not in st.session_state:
|
| 125 |
+
st.session_state.classification_history = []
|
| 126 |
+
|
| 127 |
+
st.session_state.classification_history.append({
|
| 128 |
+
'text': text,
|
| 129 |
+
'topics': topic_predictions,
|
| 130 |
+
'sentiment': sentiment_prediction,
|
| 131 |
+
'confidence': np.mean(list(topic_predictions.values()) + [sentiment_prediction['confidence']]),
|
| 132 |
+
'timestamp': datetime.now()
|
| 133 |
+
})
|
| 134 |
+
|
| 135 |
+
def create_topic_chart(predictions):
|
| 136 |
+
"""Create topic prediction chart"""
|
| 137 |
+
topics = list(predictions.keys())
|
| 138 |
+
probabilities = list(predictions.values())
|
| 139 |
+
|
| 140 |
+
fig = go.Figure(data=[
|
| 141 |
+
go.Bar(
|
| 142 |
+
x=[t.replace('_', ' ').title() for t in topics],
|
| 143 |
+
y=probabilities,
|
| 144 |
+
marker_color=['#28a745' if p >= 0.5 else '#6c757d' for p in probabilities]
|
| 145 |
+
)
|
| 146 |
+
])
|
| 147 |
+
|
| 148 |
+
fig.update_layout(
|
| 149 |
+
title="Topic Classification Probabilities",
|
| 150 |
+
xaxis_title="Topics",
|
| 151 |
+
yaxis_title="Probability",
|
| 152 |
+
height=300,
|
| 153 |
+
showlegend=False
|
| 154 |
+
)
|
| 155 |
+
|
| 156 |
+
fig.add_hline(y=0.5, line_dash="dash", line_color="red",
|
| 157 |
+
annotation_text="Threshold (0.5)")
|
| 158 |
+
|
| 159 |
+
return fig
|
| 160 |
+
|
| 161 |
+
def create_sentiment_chart(prediction):
|
| 162 |
+
"""Create sentiment prediction chart"""
|
| 163 |
+
sentiments = ['positive', 'neutral', 'negative']
|
| 164 |
+
|
| 165 |
+
# Use all probabilities if available, otherwise create from single prediction
|
| 166 |
+
if 'all_probs' in prediction:
|
| 167 |
+
probs = [prediction['all_probs'][s] for s in sentiments]
|
| 168 |
+
else:
|
| 169 |
+
# Fallback to original method
|
| 170 |
+
current_sentiment = prediction['sentiment']
|
| 171 |
+
confidence = prediction['confidence']
|
| 172 |
+
probs = [0.1, 0.1, 0.1]
|
| 173 |
+
idx = sentiments.index(current_sentiment)
|
| 174 |
+
probs[idx] = confidence
|
| 175 |
+
remaining = (1.0 - confidence) / 2
|
| 176 |
+
for i, _ in enumerate(probs):
|
| 177 |
+
if i != idx:
|
| 178 |
+
probs[i] = remaining
|
| 179 |
+
|
| 180 |
+
colors = ['#28a745', '#ffc107', '#dc3545']
|
| 181 |
+
|
| 182 |
+
# Create donut chart for single prediction
|
| 183 |
+
fig = go.Figure(data=[go.Pie(
|
| 184 |
+
labels=[s.title() for s in sentiments],
|
| 185 |
+
values=probs,
|
| 186 |
+
hole=0.3, # Creates donut effect
|
| 187 |
+
marker_colors=colors,
|
| 188 |
+
textinfo='label+percent',
|
| 189 |
+
textposition='auto'
|
| 190 |
+
)])
|
| 191 |
+
|
| 192 |
+
fig.update_layout(
|
| 193 |
+
title="Sentiment Analysis Probabilities",
|
| 194 |
+
height=300,
|
| 195 |
+
showlegend=False,
|
| 196 |
+
margin=dict(t=50, b=20, l=20, r=20)
|
| 197 |
+
)
|
| 198 |
+
|
| 199 |
+
return fig
|
| 200 |
+
|
| 201 |
+
def process_batch_classification(df, text_column, max_results=10):
|
| 202 |
+
"""Process batch classification"""
|
| 203 |
+
st.subheader("🔄 Batch Processing Results")
|
| 204 |
+
|
| 205 |
+
progress_bar = st.progress(0)
|
| 206 |
+
results = []
|
| 207 |
+
all_topic_predictions = []
|
| 208 |
+
all_sentiment_predictions = []
|
| 209 |
+
|
| 210 |
+
for i, text in enumerate(df[text_column].values[:max_results]):
|
| 211 |
+
if isinstance(text, str) and text.strip():
|
| 212 |
+
try:
|
| 213 |
+
topic_pred = simulate_topic_prediction(text)
|
| 214 |
+
sentiment_pred = simulate_sentiment_prediction(text)
|
| 215 |
+
|
| 216 |
+
# Store for visualization
|
| 217 |
+
all_topic_predictions.append(topic_pred)
|
| 218 |
+
all_sentiment_predictions.append(sentiment_pred)
|
| 219 |
+
|
| 220 |
+
results.append({
|
| 221 |
+
'text': text[:100] + '...' if len(text) > 100 else text,
|
| 222 |
+
'topics': ', '.join([t for t, p in topic_pred.items() if p >= 0.5]),
|
| 223 |
+
'sentiment': sentiment_pred['sentiment'],
|
| 224 |
+
'sentiment_confidence': sentiment_pred['confidence']
|
| 225 |
+
})
|
| 226 |
+
except Exception as e:
|
| 227 |
+
st.error(f"Error processing text {i+1}: {str(e)}")
|
| 228 |
+
continue
|
| 229 |
+
|
| 230 |
+
progress_bar.progress((i + 1) / min(len(df), max_results))
|
| 231 |
+
|
| 232 |
+
# Display results table
|
| 233 |
+
if results:
|
| 234 |
+
results_df = pd.DataFrame(results)
|
| 235 |
+
st.dataframe(results_df, use_container_width=True)
|
| 236 |
+
|
| 237 |
+
# Create visualization section
|
| 238 |
+
st.markdown("---")
|
| 239 |
+
st.subheader("📊 Batch Analysis Visualization")
|
| 240 |
+
|
| 241 |
+
col_topic_viz, col_sentiment_viz = st.columns(2)
|
| 242 |
+
|
| 243 |
+
with col_topic_viz:
|
| 244 |
+
st.markdown("**Topic Distribution**")
|
| 245 |
+
create_batch_topic_chart(all_topic_predictions)
|
| 246 |
+
|
| 247 |
+
with col_sentiment_viz:
|
| 248 |
+
st.markdown("**Sentiment Distribution**")
|
| 249 |
+
create_batch_sentiment_chart(all_sentiment_predictions)
|
| 250 |
+
|
| 251 |
+
# Download results
|
| 252 |
+
csv = results_df.to_csv(index=False)
|
| 253 |
+
st.download_button(
|
| 254 |
+
label="📥 Download Results",
|
| 255 |
+
data=csv,
|
| 256 |
+
file_name=f"classification_results_{datetime.now().strftime('%Y%m%d_%H%M%S')}.csv",
|
| 257 |
+
mime="text/csv"
|
| 258 |
+
)
|
| 259 |
+
|
| 260 |
+
def create_batch_topic_chart(all_predictions):
|
| 261 |
+
"""Create batch topic analysis chart"""
|
| 262 |
+
topics = ['product', 'customer_service', 'shipping']
|
| 263 |
+
topic_counts = {topic: 0 for topic in topics}
|
| 264 |
+
total_texts = len(all_predictions)
|
| 265 |
+
|
| 266 |
+
# Count how many texts were classified for each topic (above threshold)
|
| 267 |
+
for pred in all_predictions:
|
| 268 |
+
for topic, prob in pred.items():
|
| 269 |
+
if prob >= 0.5:
|
| 270 |
+
topic_counts[topic] += 1
|
| 271 |
+
|
| 272 |
+
# Convert to percentages
|
| 273 |
+
topic_percentages = {topic: (count / total_texts) * 100 for topic, count in topic_counts.items()}
|
| 274 |
+
|
| 275 |
+
# Create bar chart
|
| 276 |
+
fig = go.Figure(data=[
|
| 277 |
+
go.Bar(
|
| 278 |
+
x=[t.replace('_', ' ').title() for t in topics],
|
| 279 |
+
y=list(topic_percentages.values()),
|
| 280 |
+
marker_color=['#28a745', '#17a2b8', '#ffc107'],
|
| 281 |
+
text=[f'{v:.1f}%' for v in topic_percentages.values()],
|
| 282 |
+
textposition='auto'
|
| 283 |
+
)
|
| 284 |
+
])
|
| 285 |
+
|
| 286 |
+
fig.update_layout(
|
| 287 |
+
title=f"Topic Distribution Across {total_texts} Texts",
|
| 288 |
+
xaxis_title="Topics",
|
| 289 |
+
yaxis_title="Percentage of Texts (%)",
|
| 290 |
+
height=400,
|
| 291 |
+
showlegend=False
|
| 292 |
+
)
|
| 293 |
+
|
| 294 |
+
st.plotly_chart(fig, use_container_width=True)
|
| 295 |
+
|
| 296 |
+
def create_batch_sentiment_chart(all_predictions):
|
| 297 |
+
"""Create batch sentiment analysis chart (rounded/donut)"""
|
| 298 |
+
sentiments = ['positive', 'neutral', 'negative']
|
| 299 |
+
sentiment_counts = {sentiment: 0 for sentiment in sentiments}
|
| 300 |
+
total_texts = len(all_predictions)
|
| 301 |
+
|
| 302 |
+
# Count sentiment predictions
|
| 303 |
+
for pred in all_predictions:
|
| 304 |
+
sentiment = pred['sentiment']
|
| 305 |
+
sentiment_counts[sentiment] += 1
|
| 306 |
+
|
| 307 |
+
# Convert to percentages
|
| 308 |
+
sentiment_percentages = [(count / total_texts) * 100 for count in sentiment_counts.values()]
|
| 309 |
+
|
| 310 |
+
# Create donut chart
|
| 311 |
+
colors = ['#28a745', '#ffc107', '#dc3545']
|
| 312 |
+
|
| 313 |
+
fig = go.Figure(data=[go.Pie(
|
| 314 |
+
labels=[s.title() for s in sentiments],
|
| 315 |
+
values=sentiment_percentages,
|
| 316 |
+
hole=0.4, # Creates donut effect
|
| 317 |
+
marker_colors=colors,
|
| 318 |
+
textinfo='label+percent',
|
| 319 |
+
textposition='auto'
|
| 320 |
+
)])
|
| 321 |
+
|
| 322 |
+
fig.update_layout(
|
| 323 |
+
title=f"Sentiment Distribution Across {total_texts} Texts",
|
| 324 |
+
height=400,
|
| 325 |
+
showlegend=True,
|
| 326 |
+
legend=dict(
|
| 327 |
+
orientation="h",
|
| 328 |
+
yanchor="bottom",
|
| 329 |
+
y=-0.1,
|
| 330 |
+
xanchor="center",
|
| 331 |
+
x=0.5
|
| 332 |
+
)
|
| 333 |
+
)
|
| 334 |
+
|
| 335 |
+
st.plotly_chart(fig, use_container_width=True)
|
| 336 |
+
|
| 337 |
+
# ====================== Main Application ======================
|
| 338 |
+
|
| 339 |
+
# Page configuration
|
| 340 |
+
st.set_page_config(
|
| 341 |
+
page_title="Text Classification System",
|
| 342 |
+
page_icon="🔍",
|
| 343 |
+
layout="wide",
|
| 344 |
+
initial_sidebar_state="expanded"
|
| 345 |
+
)
|
| 346 |
+
|
| 347 |
+
# Custom CSS for better styling
|
| 348 |
+
st.markdown("""
|
| 349 |
+
<style>
|
| 350 |
+
.main-header {
|
| 351 |
+
font-size: 2.5rem;
|
| 352 |
+
font-weight: bold;
|
| 353 |
+
text-align: center;
|
| 354 |
+
margin-bottom: 2rem;
|
| 355 |
+
background: linear-gradient(90deg, #667eea 0%, #764ba2 100%);
|
| 356 |
+
-webkit-background-clip: text;
|
| 357 |
+
-webkit-text-fill-color: transparent;
|
| 358 |
+
}
|
| 359 |
+
|
| 360 |
+
.model-card {
|
| 361 |
+
padding: 1rem;
|
| 362 |
+
border-radius: 10px;
|
| 363 |
+
border: 1px solid #e0e0e0;
|
| 364 |
+
margin: 1rem 0;
|
| 365 |
+
background-color: #f8f9fa;
|
| 366 |
+
}
|
| 367 |
+
|
| 368 |
+
.prediction-result {
|
| 369 |
+
padding: 1rem;
|
| 370 |
+
border-radius: 8px;
|
| 371 |
+
margin: 0.5rem 0;
|
| 372 |
+
}
|
| 373 |
+
|
| 374 |
+
.topic-positive {
|
| 375 |
+
background-color: #d4edda;
|
| 376 |
+
border-left: 4px solid #28a745;
|
| 377 |
+
color: #155724 !important;
|
| 378 |
+
}
|
| 379 |
+
.topic-neutral {
|
| 380 |
+
background-color: #fff3cd;
|
| 381 |
+
border-left: 4px solid #ffc107;
|
| 382 |
+
color: #856404 !important;
|
| 383 |
+
}
|
| 384 |
+
.topic-negative {
|
| 385 |
+
background-color: #f8d7da;
|
| 386 |
+
border-left: 4px solid #dc3545;
|
| 387 |
+
color: #721c24 !important;
|
| 388 |
+
}
|
| 389 |
+
.metrics-container {
|
| 390 |
+
display: flex;
|
| 391 |
+
justify-content: space-around;
|
| 392 |
+
margin: 1rem 0;
|
| 393 |
+
}
|
| 394 |
+
|
| 395 |
+
.metric-box {
|
| 396 |
+
text-align: center;
|
| 397 |
+
padding: 1rem;
|
| 398 |
+
border-radius: 8px;
|
| 399 |
+
background-color: #ffffff;
|
| 400 |
+
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
| 401 |
+
min-width: 120px;
|
| 402 |
+
}
|
| 403 |
+
</style>
|
| 404 |
+
""", unsafe_allow_html=True)
|
| 405 |
+
|
| 406 |
+
# Title
|
| 407 |
+
st.markdown('<h1 >🔍 Ecommerce Product Review Analysis - Indonesian Language </h1>', unsafe_allow_html=True)
|
| 408 |
+
st.markdown("---")
|
| 409 |
+
|
| 410 |
+
# Sidebar for configuration
|
| 411 |
+
with st.sidebar:
|
| 412 |
+
|
| 413 |
+
st.header("📊 Model Information")
|
| 414 |
+
|
| 415 |
+
# Topic Model Info
|
| 416 |
+
with st.expander("🏷️ Topic Classification Model", expanded=True):
|
| 417 |
+
st.markdown("""
|
| 418 |
+
**Model Type:** Multi-label Classification
|
| 419 |
+
**Categories:**
|
| 420 |
+
- 📦 Product
|
| 421 |
+
- 🎧 Customer Service
|
| 422 |
+
- 🚚 Shipping
|
| 423 |
+
|
| 424 |
+
**Note:** Text can belong to multiple categories
|
| 425 |
+
""")
|
| 426 |
+
|
| 427 |
+
# Sentiment Model Info
|
| 428 |
+
with st.expander("😊 Sentiment Analysis Model", expanded=True):
|
| 429 |
+
st.markdown("""
|
| 430 |
+
**Model Type:** Single-label Classification
|
| 431 |
+
**Categories:**
|
| 432 |
+
- 😊 Positive
|
| 433 |
+
- 😐 Neutral
|
| 434 |
+
- 😞 Negative
|
| 435 |
+
""")
|
| 436 |
+
|
| 437 |
+
# Statistics (if available)
|
| 438 |
+
if 'classification_history' in st.session_state:
|
| 439 |
+
st.header("📈 Session Statistics")
|
| 440 |
+
history = st.session_state.classification_history
|
| 441 |
+
|
| 442 |
+
col_stat1, col_stat2 = st.columns(2)
|
| 443 |
+
with col_stat1:
|
| 444 |
+
st.metric("Texts Classified", len(history))
|
| 445 |
+
with col_stat2:
|
| 446 |
+
avg_confidence = np.mean([h['confidence'] for h in history])
|
| 447 |
+
st.metric("Avg Confidence", f"{avg_confidence:.2f}")
|
| 448 |
+
|
| 449 |
+
# Import pipeline module with error handling
|
| 450 |
+
try:
|
| 451 |
+
import pipeline
|
| 452 |
+
# st.success("✅ Models loaded successfully!")
|
| 453 |
+
except ImportError as e:
|
| 454 |
+
st.error(f"❌ Error importing pipeline module: {str(e)}")
|
| 455 |
+
st.info("Please make sure your pipeline.py file is in the same directory and contains the required models.")
|
| 456 |
+
st.stop()
|
| 457 |
+
except Exception as e:
|
| 458 |
+
st.error(f"❌ Error loading models: {str(e)}")
|
| 459 |
+
st.stop()
|
| 460 |
+
|
| 461 |
+
# Main content
|
| 462 |
+
st.header("📝 Text Input")
|
| 463 |
+
|
| 464 |
+
# Input methods
|
| 465 |
+
input_method = st.radio("Choose input method:", ["Single Text", "Batch Upload", "Example Texts"])
|
| 466 |
+
|
| 467 |
+
if input_method == "Single Text":
|
| 468 |
+
user_text = st.text_area(
|
| 469 |
+
"Enter text to classify:",
|
| 470 |
+
placeholder="Type or paste your text here...",
|
| 471 |
+
height=150
|
| 472 |
+
)
|
| 473 |
+
|
| 474 |
+
if st.button("🚀 Classify Text", type="primary"):
|
| 475 |
+
if user_text.strip():
|
| 476 |
+
try:
|
| 477 |
+
# Call your actual model prediction functions
|
| 478 |
+
topic_predictions = simulate_topic_prediction(user_text)
|
| 479 |
+
sentiment_prediction = simulate_sentiment_prediction(user_text)
|
| 480 |
+
|
| 481 |
+
display_predictions(user_text, topic_predictions, sentiment_prediction)
|
| 482 |
+
except Exception as e:
|
| 483 |
+
st.error(f"Error during classification: {str(e)}")
|
| 484 |
+
else:
|
| 485 |
+
st.warning("Please enter some text to classify!")
|
| 486 |
+
|
| 487 |
+
elif input_method == "Batch Upload":
|
| 488 |
+
uploaded_file = st.file_uploader("Upload CSV file", type=['csv'])
|
| 489 |
+
|
| 490 |
+
if uploaded_file is not None:
|
| 491 |
+
# Delimiter options
|
| 492 |
+
col_delim, col_encoding = st.columns(2)
|
| 493 |
+
with col_delim:
|
| 494 |
+
delimiter = st.selectbox(
|
| 495 |
+
"Select delimiter:",
|
| 496 |
+
options=[",", ";", "\t", "|", " "],
|
| 497 |
+
format_func=lambda x: {"," : "Comma (,)", ";" : "Semicolon (;)", "\t" : "Tab", "|" : "Pipe (|)", " " : "Space"}[x],
|
| 498 |
+
index=0
|
| 499 |
+
)
|
| 500 |
+
|
| 501 |
+
with col_encoding:
|
| 502 |
+
encoding = st.selectbox(
|
| 503 |
+
"Select encoding:",
|
| 504 |
+
options=["utf-8", "latin-1", "cp1252", "ascii"],
|
| 505 |
+
index=0
|
| 506 |
+
)
|
| 507 |
+
|
| 508 |
+
try:
|
| 509 |
+
df = pd.read_csv(uploaded_file, delimiter=delimiter, encoding=encoding)
|
| 510 |
+
st.write("Preview of uploaded data:")
|
| 511 |
+
st.dataframe(df.head())
|
| 512 |
+
|
| 513 |
+
text_column = st.selectbox("Select text column:", df.columns)
|
| 514 |
+
# maximum number of rows to process
|
| 515 |
+
max_rows = st.slider(
|
| 516 |
+
"Maximum rows to process:",
|
| 517 |
+
min_value=1,
|
| 518 |
+
max_value=len(df),
|
| 519 |
+
value=min(100, len(df)),
|
| 520 |
+
step=1
|
| 521 |
+
)
|
| 522 |
+
if st.button("🔄 Process Batch", type="primary"):
|
| 523 |
+
process_batch_classification(df, text_column, max_results=max_rows)
|
| 524 |
+
except Exception as e:
|
| 525 |
+
st.error(f"Error reading CSV file: {str(e)}")
|
| 526 |
+
st.info("Try different delimiter or encoding options if the file doesn't load correctly.")
|
| 527 |
+
|
| 528 |
+
else: # Example Texts
|
| 529 |
+
st.subheader("Try these example texts:")
|
| 530 |
+
|
| 531 |
+
# Example type selection
|
| 532 |
+
example_type = st.radio(
|
| 533 |
+
"Choose example type:",
|
| 534 |
+
["Single Examples", "CSV Examples"],
|
| 535 |
+
horizontal=True
|
| 536 |
+
)
|
| 537 |
+
|
| 538 |
+
if example_type == "Single Examples":
|
| 539 |
+
examples = [
|
| 540 |
+
"Pengiriman terlambat 3 hari dan paketnya rusak.",
|
| 541 |
+
"Pelayanan pelanggan sangat baik! Tim support sangat membantu dan responsif.",
|
| 542 |
+
"Kualitas produknya sangat bagus, sesuai dengan yang saya harapkan.",
|
| 543 |
+
"Saya kesulitan dengan proses pengembalian barang, sangat membingungkan.",
|
| 544 |
+
"Pengiriman cepat dan barang sampai dalam kondisi sempurna!"
|
| 545 |
+
]
|
| 546 |
+
|
| 547 |
+
# Initialize session state for tracking which example to show results for
|
| 548 |
+
if 'selected_example' not in st.session_state:
|
| 549 |
+
st.session_state.selected_example = None
|
| 550 |
+
st.session_state.example_results = None
|
| 551 |
+
|
| 552 |
+
for i, example in enumerate(examples):
|
| 553 |
+
col_ex1, col_ex2 = st.columns([4, 1])
|
| 554 |
+
with col_ex1:
|
| 555 |
+
st.text(f"{i+1}. {example}")
|
| 556 |
+
with col_ex2:
|
| 557 |
+
if st.button(f"Classify", key=f"example_{i}"):
|
| 558 |
+
try:
|
| 559 |
+
topic_predictions = simulate_topic_prediction(example)
|
| 560 |
+
sentiment_prediction = simulate_sentiment_prediction(example)
|
| 561 |
+
|
| 562 |
+
# Store results in session state
|
| 563 |
+
st.session_state.selected_example = i
|
| 564 |
+
st.session_state.example_results = {
|
| 565 |
+
'text': example,
|
| 566 |
+
'topic_predictions': topic_predictions,
|
| 567 |
+
'sentiment_prediction': sentiment_prediction
|
| 568 |
+
}
|
| 569 |
+
st.rerun()
|
| 570 |
+
except Exception as e:
|
| 571 |
+
st.error(f"Error during classification: {str(e)}")
|
| 572 |
+
|
| 573 |
+
# Display results below all examples if any example was classified
|
| 574 |
+
if st.session_state.selected_example is not None and st.session_state.example_results:
|
| 575 |
+
results = st.session_state.example_results
|
| 576 |
+
display_predictions(
|
| 577 |
+
results['text'],
|
| 578 |
+
results['topic_predictions'],
|
| 579 |
+
results['sentiment_prediction']
|
| 580 |
+
)
|
| 581 |
+
|
| 582 |
+
|
| 583 |
+
else: # CSV Examples
|
| 584 |
+
st.markdown("**Pre-prepared CSV datasets for testing:**")
|
| 585 |
+
|
| 586 |
+
# Predefined CSV options
|
| 587 |
+
csv_options = {
|
| 588 |
+
"Sample E-commerce Reviews": {
|
| 589 |
+
"data": {
|
| 590 |
+
"review_text": [
|
| 591 |
+
"Produk bagus tapi pengiriman lama",
|
| 592 |
+
"Customer service tidak responsif",
|
| 593 |
+
"Barang sesuai deskripsi, packing aman",
|
| 594 |
+
"Pengiriman cepat tapi produk cacat",
|
| 595 |
+
"Pelayanan memuaskan, akan order lagi",
|
| 596 |
+
"Kualitas produk mengecewakan",
|
| 597 |
+
"Pengiriman sangat cepat dan aman",
|
| 598 |
+
"Tim support sangat membantu menyelesaikan masalah",
|
| 599 |
+
"Produk original dan sesuai gambar",
|
| 600 |
+
"Proses refund sangat lambat dan rumit"
|
| 601 |
+
],
|
| 602 |
+
"rating": [4, 2, 5, 3, 5, 1, 5, 5, 4, 2],
|
| 603 |
+
"category": ["Electronics", "Fashion", "Books", "Electronics", "Fashion", "Electronics", "Books", "Fashion", "Electronics", "Fashion"]
|
| 604 |
+
},
|
| 605 |
+
"description": "Indonesian e-commerce reviews with mixed sentiments and topics"
|
| 606 |
+
},
|
| 607 |
+
"Product Reviews Dataset": {
|
| 608 |
+
"data": {
|
| 609 |
+
"review_text": [
|
| 610 |
+
"Laptop ini performanya sangat bagus untuk gaming",
|
| 611 |
+
"Baju ini bahannya halus dan nyaman dipakai",
|
| 612 |
+
"Buku ini sangat informatif dan mudah dipahami",
|
| 613 |
+
"Handphone rusak setelah 2 minggu pemakaian",
|
| 614 |
+
"Sepatu ini sangat nyaman untuk jogging",
|
| 615 |
+
"Kamera foto hasil jelek, tidak sesuai harga",
|
| 616 |
+
"Pelayanan toko online ini sangat memuaskan",
|
| 617 |
+
"Pengiriman terlambat tapi barang aman",
|
| 618 |
+
"Produk tidak sesuai dengan deskripsi",
|
| 619 |
+
"Kualitas packaging sangat baik dan rapi"
|
| 620 |
+
],
|
| 621 |
+
"product_type": ["Laptop", "Clothing", "Book", "Phone", "Shoes", "Camera", "Service", "Shipping", "General", "Packaging"],
|
| 622 |
+
"sentiment_label": ["positive", "positive", "positive", "negative", "positive", "negative", "positive", "neutral", "negative", "positive"]
|
| 623 |
+
},
|
| 624 |
+
"description": "Product-focused reviews with pre-labeled sentiments"
|
| 625 |
+
},
|
| 626 |
+
"Customer Service Reviews": {
|
| 627 |
+
"data": {
|
| 628 |
+
"review_text": [
|
| 629 |
+
"CS sangat ramah dan membantu menyelesaikan komplain",
|
| 630 |
+
"Susah menghubungi customer service via telepon",
|
| 631 |
+
"Live chat responsive tapi solusi kurang tepat",
|
| 632 |
+
"Tim support email sangat profesional",
|
| 633 |
+
"Customer service tidak memberikan solusi yang jelas",
|
| 634 |
+
"Pelayanan 24/7 sangat membantu customer",
|
| 635 |
+
"CS galak dan tidak sabar melayani customer",
|
| 636 |
+
"Support ticket dijawab dengan cepat dan tepat"
|
| 637 |
+
],
|
| 638 |
+
"channel": ["Phone", "Phone", "Chat", "Email", "Phone", "24/7", "Phone", "Ticket"],
|
| 639 |
+
"resolution": ["Resolved", "Unresolved", "Partial", "Resolved", "Unresolved", "Resolved", "Unresolved", "Resolved"]
|
| 640 |
+
},
|
| 641 |
+
"description": "Customer service specific reviews and interactions"
|
| 642 |
+
}
|
| 643 |
+
}
|
| 644 |
+
|
| 645 |
+
# CSV selection
|
| 646 |
+
selected_csv = st.selectbox(
|
| 647 |
+
"Choose a pre-prepared dataset:",
|
| 648 |
+
options=list(csv_options.keys()),
|
| 649 |
+
help="Select from curated datasets for testing different scenarios"
|
| 650 |
+
)
|
| 651 |
+
|
| 652 |
+
if selected_csv:
|
| 653 |
+
csv_info = csv_options[selected_csv]
|
| 654 |
+
sample_df = pd.DataFrame(csv_info["data"])
|
| 655 |
+
|
| 656 |
+
# Display info and preview
|
| 657 |
+
st.info(f"📋 **{selected_csv}**: {csv_info['description']}")
|
| 658 |
+
|
| 659 |
+
col_preview, col_actions = st.columns([3, 1])
|
| 660 |
+
|
| 661 |
+
with col_preview:
|
| 662 |
+
st.dataframe(sample_df, use_container_width=True)
|
| 663 |
+
|
| 664 |
+
with col_actions:
|
| 665 |
+
# Download button
|
| 666 |
+
csv_data = sample_df.to_csv(index=False)
|
| 667 |
+
st.download_button(
|
| 668 |
+
label="📥 Download CSV",
|
| 669 |
+
data=csv_data,
|
| 670 |
+
file_name=f"{selected_csv.lower().replace(' ', '_')}.csv",
|
| 671 |
+
mime="text/csv",
|
| 672 |
+
help="Download this dataset to test batch processing"
|
| 673 |
+
)
|
| 674 |
+
|
| 675 |
+
# Quick test button
|
| 676 |
+
if st.button("🚀 Quick Test", help="Automatically process this dataset"):
|
| 677 |
+
st.session_state['quick_test_df'] = sample_df
|
| 678 |
+
st.session_state['quick_test_column'] = 'review_text'
|
| 679 |
+
st.rerun()
|
| 680 |
+
|
| 681 |
+
# Handle quick test
|
| 682 |
+
if 'quick_test_df' in st.session_state:
|
| 683 |
+
st.markdown("---")
|
| 684 |
+
st.subheader("🔄 Quick Test Results")
|
| 685 |
+
process_batch_classification(
|
| 686 |
+
st.session_state['quick_test_df'],
|
| 687 |
+
st.session_state['quick_test_column'],
|
| 688 |
+
len(st.session_state['quick_test_df'])
|
| 689 |
+
)
|
| 690 |
+
# Clear session state
|
| 691 |
+
del st.session_state['quick_test_df']
|
| 692 |
+
del st.session_state['quick_test_column']
|
| 693 |
+
|
| 694 |
+
st.info("💡 **Tip:** Download any dataset above and upload it in the 'Batch Upload' section, or use 'Quick Test' for immediate processing!")
|
| 695 |
+
|
| 696 |
+
# Footer
|
| 697 |
+
st.markdown("---")
|
model_class.py
ADDED
|
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch.nn as nn
|
| 2 |
+
import torch
|
| 3 |
+
from huggingface_hub import PyTorchModelHubMixin
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
class CustomClassifierAspect(nn.Module, PyTorchModelHubMixin):
|
| 7 |
+
def __init__(self, bert, num_labels):
|
| 8 |
+
super(CustomClassifierAspect, self).__init__()
|
| 9 |
+
self.bert = bert
|
| 10 |
+
self.linear38 = nn.Linear(bert.config.hidden_size, 38)
|
| 11 |
+
self.dropout38 = nn.Dropout(0.2)
|
| 12 |
+
self.linear8 = nn.Linear(38, 8)
|
| 13 |
+
self.linear3 = nn.Linear(8, 3)
|
| 14 |
+
self.linearOutput = nn.Linear(3, num_labels)
|
| 15 |
+
self.sigmoid = nn.Sigmoid()
|
| 16 |
+
|
| 17 |
+
def forward(self, input_ids, attention_mask):
|
| 18 |
+
outputs = self.bert(input_ids=input_ids, attention_mask=attention_mask)
|
| 19 |
+
pooled_output = outputs.pooler_output
|
| 20 |
+
logits38 = self.linear38(pooled_output)
|
| 21 |
+
logits38 = self.dropout38(logits38)
|
| 22 |
+
logits8 = self.linear8(logits38)
|
| 23 |
+
logits3 = self.linear3(logits8)
|
| 24 |
+
logits = self.linearOutput(logits3)
|
| 25 |
+
probabilities = self.sigmoid(logits)
|
| 26 |
+
return probabilities
|
| 27 |
+
|
| 28 |
+
class CustomClassifierSentiment(nn.Module, PyTorchModelHubMixin):
|
| 29 |
+
def __init__(self, bert, num_labels):
|
| 30 |
+
super(CustomClassifierSentiment, self).__init__()
|
| 31 |
+
self.bert = bert
|
| 32 |
+
self.linear38 = nn.Linear(bert.config.hidden_size, 38)
|
| 33 |
+
self.dropout38 = nn.Dropout(0.2)
|
| 34 |
+
self.linear8 = nn.Linear(38, 8)
|
| 35 |
+
self.linear3 = nn.Linear(8, 3)
|
| 36 |
+
self.linearOutput = nn.Linear(3, num_labels)
|
| 37 |
+
self.softmax = nn.Softmax()
|
| 38 |
+
|
| 39 |
+
def forward(self, input_ids, attention_mask):
|
| 40 |
+
outputs = self.bert(input_ids=input_ids, attention_mask=attention_mask)
|
| 41 |
+
pooled_output = outputs.pooler_output
|
| 42 |
+
logits38 = self.linear38(pooled_output)
|
| 43 |
+
logits38 = self.dropout38(logits38)
|
| 44 |
+
logits8 = self.linear8(logits38)
|
| 45 |
+
logits3 = self.linear3(logits8)
|
| 46 |
+
logits = self.linearOutput(logits3)
|
| 47 |
+
probabilities = self.softmax(logits)
|
| 48 |
+
return probabilities
|
pipeline.py
ADDED
|
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import numpy as np
|
| 3 |
+
from transformers import BertModel, AutoTokenizer
|
| 4 |
+
from model_class import CustomClassifierAspect, CustomClassifierSentiment
|
| 5 |
+
import streamlit as st
|
| 6 |
+
|
| 7 |
+
ready_status = False
|
| 8 |
+
bert = None
|
| 9 |
+
tokenizer = None
|
| 10 |
+
aspect_model = None
|
| 11 |
+
sentiment_model = None
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
with st.status("Loading models...", expanded=True, state='running') as status:
|
| 15 |
+
# Load the base model and tokenizer
|
| 16 |
+
bertAspect = BertModel.from_pretrained("indobenchmark/indobert-base-p1",
|
| 17 |
+
num_labels=3,
|
| 18 |
+
problem_type="multi_label_classification")
|
| 19 |
+
bertSentiment = BertModel.from_pretrained("indobenchmark/indobert-base-p1")
|
| 20 |
+
|
| 21 |
+
tokenizer = AutoTokenizer.from_pretrained("indobenchmark/indobert-base-p1")
|
| 22 |
+
|
| 23 |
+
# Load custom models
|
| 24 |
+
aspect_model = CustomClassifierAspect.from_pretrained("fahrendrakhoirul/indobert-finetuned-ecommerce-product-reviews-aspect-multilabel", bert=bertAspect)
|
| 25 |
+
sentiment_model = CustomClassifierSentiment.from_pretrained("fahrendrakhoirul/indobert-finetuned-ecommerce-product-reviews-sentiment", bert=bertSentiment)
|
| 26 |
+
st.write("Model loaded")
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
# Update status to indicate models are ready
|
| 30 |
+
if aspect_model and sentiment_model != None:
|
| 31 |
+
ready_status = True
|
| 32 |
+
if ready_status:
|
| 33 |
+
status.update(label="Models loaded successfully", expanded=False)
|
| 34 |
+
status.success("Models loaded successfully", icon="✅")
|
| 35 |
+
else:
|
| 36 |
+
status.error("Failed to load models")
|