Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -26,6 +26,39 @@ def create_trend_chart(space_id, daily_ranks_df):
|
|
| 26 |
height=500 # ์์ ๋ ๋ถ๋ถ
|
| 27 |
)
|
| 28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
fig.update_layout(
|
| 30 |
xaxis_title="Date",
|
| 31 |
yaxis_title="Rank",
|
|
@@ -57,18 +90,22 @@ def create_trend_chart(space_id, daily_ranks_df):
|
|
| 57 |
return None
|
| 58 |
|
| 59 |
def get_duplicate_spaces(top_100_spaces):
|
| 60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
top_100_spaces['clean_id'] = top_100_spaces['id'].apply(lambda x: x.split('/')[0])
|
| 62 |
|
| 63 |
-
# username๋ณ
|
| 64 |
score_sums = top_100_spaces.groupby('clean_id')['trendingScore'].sum()
|
| 65 |
|
| 66 |
# ๋๋ฒ๊น
์ฉ ์ถ๋ ฅ
|
| 67 |
-
print("\n=== ID๋ณ ์ค์ฝ์ด ํฉ์ฐ ๊ฒฐ๊ณผ ===")
|
| 68 |
-
for
|
| 69 |
-
print(f"ID: {
|
| 70 |
|
| 71 |
-
#
|
| 72 |
top_20_scores = score_sums.sort_values(ascending=False).head(20)
|
| 73 |
return top_20_scores
|
| 74 |
|
|
@@ -84,7 +121,7 @@ def create_duplicates_chart(score_sums):
|
|
| 84 |
})
|
| 85 |
|
| 86 |
# ๋๋ฒ๊น
์ฉ ์ถ๋ ฅ
|
| 87 |
-
print("\n=== ์ฐจํธ ๋ฐ์ดํฐ ===")
|
| 88 |
print(df)
|
| 89 |
|
| 90 |
fig = px.bar(
|
|
@@ -92,7 +129,7 @@ def create_duplicates_chart(score_sums):
|
|
| 92 |
x='id',
|
| 93 |
y='rank',
|
| 94 |
title="Top 20 Spaces by Combined Trending Score",
|
| 95 |
-
height=500, #
|
| 96 |
text='total_score'
|
| 97 |
)
|
| 98 |
|
|
@@ -103,7 +140,7 @@ def create_duplicates_chart(score_sums):
|
|
| 103 |
paper_bgcolor='white',
|
| 104 |
xaxis_tickangle=-45,
|
| 105 |
yaxis=dict(
|
| 106 |
-
range=[
|
| 107 |
tickmode='linear',
|
| 108 |
tick0=1,
|
| 109 |
dtick=1
|
|
@@ -172,66 +209,97 @@ def update_display(selection):
|
|
| 172 |
return None, gr.HTML(value=f"<div style='color: red;'>Error processing data: {str(e)}</div>")
|
| 173 |
|
| 174 |
def load_and_process_data():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 175 |
try:
|
| 176 |
url = "https://huggingface.co/datasets/cfahlgren1/hub-stats/resolve/main/spaces.parquet"
|
| 177 |
response = requests.get(url)
|
| 178 |
df = pd.read_parquet(BytesIO(response.content))
|
| 179 |
|
|
|
|
| 180 |
thirty_days_ago = datetime.now() - timedelta(days=30)
|
| 181 |
df['createdAt'] = pd.to_datetime(df['createdAt'])
|
|
|
|
|
|
|
| 182 |
df = df[df['createdAt'] >= thirty_days_ago].copy()
|
| 183 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 184 |
dates = pd.date_range(start=thirty_days_ago, end=datetime.now(), freq='D')
|
| 185 |
daily_ranks = []
|
| 186 |
|
|
|
|
| 187 |
for date in dates:
|
|
|
|
| 188 |
date_data = df[df['createdAt'].dt.date <= date.date()].copy()
|
|
|
|
| 189 |
date_data = date_data.sort_values(['trendingScore', 'id'], ascending=[False, True])
|
| 190 |
date_data['rank'] = range(1, len(date_data) + 1)
|
| 191 |
date_data['date'] = date.date()
|
|
|
|
| 192 |
daily_ranks.append(
|
| 193 |
date_data[['id', 'date', 'rank', 'trendingScore', 'createdAt']]
|
| 194 |
)
|
| 195 |
|
|
|
|
| 196 |
daily_ranks_df = pd.concat(daily_ranks, ignore_index=True)
|
| 197 |
|
|
|
|
| 198 |
latest_date = daily_ranks_df['date'].max()
|
| 199 |
top_100_spaces = daily_ranks_df[
|
| 200 |
(daily_ranks_df['date'] == latest_date) &
|
| 201 |
(daily_ranks_df['rank'] <= 100)
|
| 202 |
].sort_values('rank').copy()
|
| 203 |
|
|
|
|
|
|
|
|
|
|
| 204 |
return daily_ranks_df, top_100_spaces
|
| 205 |
except Exception as e:
|
| 206 |
print(f"Error loading data: {e}")
|
| 207 |
return pd.DataFrame(), pd.DataFrame()
|
| 208 |
|
| 209 |
-
# ๋ฐ์ดํฐ ๋ก๋
|
| 210 |
print("Loading initial data...")
|
| 211 |
daily_ranks_df, top_100_spaces = load_and_process_data()
|
| 212 |
print("Data loaded successfully!")
|
| 213 |
|
| 214 |
-
# ์ค๋ณต ์คํ์ด์ค ๋ฐ์ดํฐ ๊ณ์ฐ
|
| 215 |
duplicates = get_duplicate_spaces(top_100_spaces)
|
| 216 |
duplicates_chart = create_duplicates_chart(duplicates)
|
| 217 |
|
| 218 |
-
# Gradio ์ธํฐํ์ด์ค
|
| 219 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 220 |
gr.Markdown("""
|
| 221 |
-
# HF Space Ranking Tracker(~30
|
| 222 |
|
| 223 |
-
Track, analyze, and discover trending AI applications in the Hugging Face ecosystem.
|
|
|
|
|
|
|
| 224 |
""")
|
| 225 |
|
| 226 |
with gr.Tabs():
|
| 227 |
with gr.Tab("Dashboard"):
|
| 228 |
with gr.Row(variant="panel"):
|
| 229 |
-
with gr.Column(scale=5):
|
| 230 |
trend_plot = gr.Plot(
|
| 231 |
label="Daily Rank Trend",
|
| 232 |
container=True
|
| 233 |
)
|
| 234 |
-
with gr.Column(scale=5):
|
| 235 |
duplicates_plot = gr.Plot(
|
| 236 |
label="Multiple Entries Analysis",
|
| 237 |
value=duplicates_chart,
|
|
@@ -243,12 +311,14 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
| 243 |
value="<div style='text-align: center; padding: 20px; color: #666;'>Select a space to view details</div>"
|
| 244 |
)
|
| 245 |
|
|
|
|
| 246 |
space_selection = gr.Radio(
|
| 247 |
choices=[row['id'] for _, row in top_100_spaces.iterrows()],
|
| 248 |
value=None,
|
| 249 |
visible=False
|
| 250 |
)
|
| 251 |
|
|
|
|
| 252 |
html_content = """
|
| 253 |
<div style='display: flex; flex-wrap: wrap; gap: 16px; justify-content: center;'>
|
| 254 |
""" + "".join([
|
|
@@ -299,6 +369,7 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
| 299 |
</div>
|
| 300 |
<script>
|
| 301 |
function gradioEvent(spaceId) {
|
|
|
|
| 302 |
const radio = document.querySelector(`input[type="radio"][value="${spaceId}"]`);
|
| 303 |
if (radio) {
|
| 304 |
radio.checked = true;
|
|
@@ -336,11 +407,16 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
| 336 |
- Make data-driven decisions about your AI projects
|
| 337 |
- Stay ahead of the curve in AI application development
|
| 338 |
|
| 339 |
-
Our dashboard provides a comprehensive view of the Hugging Face Spaces ecosystem,
|
|
|
|
|
|
|
|
|
|
| 340 |
|
| 341 |
-
Experience the pulse of the AI community through our daily updated rankings and discover
|
|
|
|
| 342 |
""")
|
| 343 |
-
|
|
|
|
| 344 |
space_selection.change(
|
| 345 |
fn=update_display,
|
| 346 |
inputs=[space_selection],
|
|
@@ -349,4 +425,4 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
| 349 |
)
|
| 350 |
|
| 351 |
if __name__ == "__main__":
|
| 352 |
-
demo.launch(share=True)
|
|
|
|
| 26 |
height=500 # ์์ ๋ ๋ถ๋ถ
|
| 27 |
)
|
| 28 |
|
| 29 |
+
fig.update_layout(
|
| 30 |
+
xaxis_title="Date",
|
| 31 |
+
yaxis_title="Rank",
|
| 32 |
+
yaxis=dict(
|
| 33 |
+
range=[100, 1],
|
| 34 |
+
tickmode='linear',import gradio as gr
|
| 35 |
+
import pandas as pd
|
| 36 |
+
import plotly.express as px
|
| 37 |
+
from datetime import datetime, timedelta
|
| 38 |
+
import requests
|
| 39 |
+
from io import BytesIO
|
| 40 |
+
|
| 41 |
+
def create_trend_chart(space_id, daily_ranks_df):
|
| 42 |
+
if space_id is None or daily_ranks_df.empty:
|
| 43 |
+
return None
|
| 44 |
+
|
| 45 |
+
try:
|
| 46 |
+
space_data = daily_ranks_df[daily_ranks_df['id'] == space_id].copy()
|
| 47 |
+
if space_data.empty:
|
| 48 |
+
return None
|
| 49 |
+
|
| 50 |
+
space_data = space_data.sort_values('date')
|
| 51 |
+
|
| 52 |
+
fig = px.line(
|
| 53 |
+
space_data,
|
| 54 |
+
x='date',
|
| 55 |
+
y='rank',
|
| 56 |
+
title=f'Daily Rank Trend for {space_id}',
|
| 57 |
+
labels={'date': 'Date', 'rank': 'Rank'},
|
| 58 |
+
markers=True,
|
| 59 |
+
height=500 # ํ์์ ์กฐ์
|
| 60 |
+
)
|
| 61 |
+
|
| 62 |
fig.update_layout(
|
| 63 |
xaxis_title="Date",
|
| 64 |
yaxis_title="Rank",
|
|
|
|
| 90 |
return None
|
| 91 |
|
| 92 |
def get_duplicate_spaces(top_100_spaces):
|
| 93 |
+
"""
|
| 94 |
+
top_100_spaces ์์์ username/spacename ํํ์ id์์ username๋ง ๋ผ์ด๋ธ ํ
|
| 95 |
+
(clean_id), ํด๋น username์ ์ํ ์ฌ๋ฌ ์คํ์ด์ค ์ ์๋ฅผ ํฉ์ฐํ์ฌ ์์ 20์ ์ถ์ถ
|
| 96 |
+
"""
|
| 97 |
+
# clean_id ์ถ์ถ
|
| 98 |
top_100_spaces['clean_id'] = top_100_spaces['id'].apply(lambda x: x.split('/')[0])
|
| 99 |
|
| 100 |
+
# username๋ณ ํธ๋ ๋ฉ ์ค์ฝ์ด ํฉ์ฐ
|
| 101 |
score_sums = top_100_spaces.groupby('clean_id')['trendingScore'].sum()
|
| 102 |
|
| 103 |
# ๋๋ฒ๊น
์ฉ ์ถ๋ ฅ
|
| 104 |
+
print("\n=== ID๋ณ ์ค์ฝ์ด ํฉ์ฐ ๊ฒฐ๊ณผ (์์ 20) ===")
|
| 105 |
+
for cid, score in score_sums.sort_values(ascending=False).head(20).items():
|
| 106 |
+
print(f"Clean ID: {cid}, Total Score: {score}")
|
| 107 |
|
| 108 |
+
# ์์ 20๊ฐ๋ง ์ถ์ถ
|
| 109 |
top_20_scores = score_sums.sort_values(ascending=False).head(20)
|
| 110 |
return top_20_scores
|
| 111 |
|
|
|
|
| 121 |
})
|
| 122 |
|
| 123 |
# ๋๋ฒ๊น
์ฉ ์ถ๋ ฅ
|
| 124 |
+
print("\n=== ์ฐจํธ ๋ฐ์ดํฐ (clean_id ๋จ์) ===")
|
| 125 |
print(df)
|
| 126 |
|
| 127 |
fig = px.bar(
|
|
|
|
| 129 |
x='id',
|
| 130 |
y='rank',
|
| 131 |
title="Top 20 Spaces by Combined Trending Score",
|
| 132 |
+
height=500, # ํ์์ ์กฐ์
|
| 133 |
text='total_score'
|
| 134 |
)
|
| 135 |
|
|
|
|
| 140 |
paper_bgcolor='white',
|
| 141 |
xaxis_tickangle=-45,
|
| 142 |
yaxis=dict(
|
| 143 |
+
range=[len(df) + 0.5, 0.5], # ์์ 20๊ฐ ๊ธฐ์ค
|
| 144 |
tickmode='linear',
|
| 145 |
tick0=1,
|
| 146 |
dtick=1
|
|
|
|
| 209 |
return None, gr.HTML(value=f"<div style='color: red;'>Error processing data: {str(e)}</div>")
|
| 210 |
|
| 211 |
def load_and_process_data():
|
| 212 |
+
"""
|
| 213 |
+
- spaces.parquet ํ์ผ์ ๋ก๋ ํ 30์ผ ์ด๋ด ๋ฐ์ดํฐ๋ง ํํฐ๋ง.
|
| 214 |
+
- ์ค๋ณต ๋ฐฉ์ง:
|
| 215 |
+
1) (์ ํ) createdAt/ID ๊ธฐ์ค์ผ๋ก ์ค๋ณต ์ ๊ฑฐ (๋์ผ ์๊ฐ๋์ ์ฌ๋ฌ๋ฒ ๊ธฐ๋ก๋ Space๊ฐ ์์ผ๋ฉด)
|
| 216 |
+
2) ๋ ์ง๋ณ๋ก ๋ญํน ์ฐ์ -> daily_ranks_df
|
| 217 |
+
3) ์ต์ข
์ต์ ๋ ์ง ๊ธฐ์ค Top 100 ์ถ์ถ ํ ๋์ผ ID ์ค๋ณต ์ ๊ฑฐ
|
| 218 |
+
"""
|
| 219 |
try:
|
| 220 |
url = "https://huggingface.co/datasets/cfahlgren1/hub-stats/resolve/main/spaces.parquet"
|
| 221 |
response = requests.get(url)
|
| 222 |
df = pd.read_parquet(BytesIO(response.content))
|
| 223 |
|
| 224 |
+
# 30์ผ ์ ์์ ๊ณ์ฐ
|
| 225 |
thirty_days_ago = datetime.now() - timedelta(days=30)
|
| 226 |
df['createdAt'] = pd.to_datetime(df['createdAt'])
|
| 227 |
+
|
| 228 |
+
# 30์ผ ๋ด์ ์์ฑ๋ ๊ธฐ๋ก๋ง ํํฐ๋ง
|
| 229 |
df = df[df['createdAt'] >= thirty_days_ago].copy()
|
| 230 |
|
| 231 |
+
# (์ ํ) createdAt & id ๊ธฐ์ค ์ค๋ณต ์ ๊ฑฐ
|
| 232 |
+
# ๋ง์ฝ ๋์ผ createdAt ์์ ์ ๋์ผ id๊ฐ ์ฌ๋ฌ ํ์ผ๋ก ๋ค์ด์จ ๊ฒฝ์ฐ ๊ฐ์ฅ ์ต์ (๋๋ ๊ฐ์ฅ ๋์ ์ค์ฝ์ด)๋ง ๋จ๊น
|
| 233 |
+
df = (
|
| 234 |
+
df
|
| 235 |
+
.sort_values(['createdAt', 'trendingScore'], ascending=[True, False])
|
| 236 |
+
.drop_duplicates(subset=['createdAt', 'id'], keep='first')
|
| 237 |
+
.reset_index(drop=True)
|
| 238 |
+
)
|
| 239 |
+
|
| 240 |
+
# ๋ ์ง ๋ฒ์ ์์ฑ
|
| 241 |
dates = pd.date_range(start=thirty_days_ago, end=datetime.now(), freq='D')
|
| 242 |
daily_ranks = []
|
| 243 |
|
| 244 |
+
# ๋ ์ง๋ณ๋ก rank ๊ณ์ฐ
|
| 245 |
for date in dates:
|
| 246 |
+
# date ๊ธฐ์ค์ผ๋ก createdAt์ด date ์ดํ์ธ ์คํ์ด์ค๋ง ์ถ์ถ
|
| 247 |
date_data = df[df['createdAt'].dt.date <= date.date()].copy()
|
| 248 |
+
# trendingScore ๋ด๋ฆผ์ฐจ์, id ์ค๋ฆ์ฐจ์ ์ ๋ ฌ
|
| 249 |
date_data = date_data.sort_values(['trendingScore', 'id'], ascending=[False, True])
|
| 250 |
date_data['rank'] = range(1, len(date_data) + 1)
|
| 251 |
date_data['date'] = date.date()
|
| 252 |
+
|
| 253 |
daily_ranks.append(
|
| 254 |
date_data[['id', 'date', 'rank', 'trendingScore', 'createdAt']]
|
| 255 |
)
|
| 256 |
|
| 257 |
+
# ์ผ์๋ณ ๋ญํน ๋ฐ์ดํฐ๋ฅผ ํฉ์นจ
|
| 258 |
daily_ranks_df = pd.concat(daily_ranks, ignore_index=True)
|
| 259 |
|
| 260 |
+
# ์ต์ ๋ ์ง ๊ธฐ์ค Top 100 ์ถ์ถ
|
| 261 |
latest_date = daily_ranks_df['date'].max()
|
| 262 |
top_100_spaces = daily_ranks_df[
|
| 263 |
(daily_ranks_df['date'] == latest_date) &
|
| 264 |
(daily_ranks_df['rank'] <= 100)
|
| 265 |
].sort_values('rank').copy()
|
| 266 |
|
| 267 |
+
# ํน์ ์ค๋ณต(id๊ฐ ๋์ผ) ํ์ด ์์ ์ ์์ผ๋ฏ๋ก ํ ๋ฒ ๋ ์ ๊ฑฐ
|
| 268 |
+
top_100_spaces = top_100_spaces.drop_duplicates(subset=['id'], keep='first').reset_index(drop=True)
|
| 269 |
+
|
| 270 |
return daily_ranks_df, top_100_spaces
|
| 271 |
except Exception as e:
|
| 272 |
print(f"Error loading data: {e}")
|
| 273 |
return pd.DataFrame(), pd.DataFrame()
|
| 274 |
|
| 275 |
+
# ์ค์ ์คํ: ๋ฐ์ดํฐ ๋ก๋
|
| 276 |
print("Loading initial data...")
|
| 277 |
daily_ranks_df, top_100_spaces = load_and_process_data()
|
| 278 |
print("Data loaded successfully!")
|
| 279 |
|
| 280 |
+
# ์ค๋ณต ์คํ์ด์ค ๋ฐ์ดํฐ(= ๋์ผ username์ด ์ฌ๋ฌ ์คํ์ด์ค ์ด์)๋ฅผ ๊ณ์ฐ
|
| 281 |
duplicates = get_duplicate_spaces(top_100_spaces)
|
| 282 |
duplicates_chart = create_duplicates_chart(duplicates)
|
| 283 |
|
| 284 |
+
# Gradio ์ธํฐํ์ด์ค ๊ตฌ์ฑ
|
| 285 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 286 |
gr.Markdown("""
|
| 287 |
+
# HF Space Ranking Tracker (~30 Days)
|
| 288 |
|
| 289 |
+
Track, analyze, and discover trending AI applications in the Hugging Face ecosystem.
|
| 290 |
+
Our service continuously monitors and ranks all Spaces over a 30-day period,
|
| 291 |
+
providing detailed analytics and daily ranking changes for the top 100 performers.
|
| 292 |
""")
|
| 293 |
|
| 294 |
with gr.Tabs():
|
| 295 |
with gr.Tab("Dashboard"):
|
| 296 |
with gr.Row(variant="panel"):
|
| 297 |
+
with gr.Column(scale=5):
|
| 298 |
trend_plot = gr.Plot(
|
| 299 |
label="Daily Rank Trend",
|
| 300 |
container=True
|
| 301 |
)
|
| 302 |
+
with gr.Column(scale=5):
|
| 303 |
duplicates_plot = gr.Plot(
|
| 304 |
label="Multiple Entries Analysis",
|
| 305 |
value=duplicates_chart,
|
|
|
|
| 311 |
value="<div style='text-align: center; padding: 20px; color: #666;'>Select a space to view details</div>"
|
| 312 |
)
|
| 313 |
|
| 314 |
+
# Radio ๋ฒํผ์ ์จ๊ฒจ๋๊ณ , ์นด๋ ํด๋ฆญ์ผ๋ก ์ ํํ๋๋ก ๊ตฌ์ฑ
|
| 315 |
space_selection = gr.Radio(
|
| 316 |
choices=[row['id'] for _, row in top_100_spaces.iterrows()],
|
| 317 |
value=None,
|
| 318 |
visible=False
|
| 319 |
)
|
| 320 |
|
| 321 |
+
# Top 100์ ์นด๋ ํํ๋ก ํ์
|
| 322 |
html_content = """
|
| 323 |
<div style='display: flex; flex-wrap: wrap; gap: 16px; justify-content: center;'>
|
| 324 |
""" + "".join([
|
|
|
|
| 369 |
</div>
|
| 370 |
<script>
|
| 371 |
function gradioEvent(spaceId) {
|
| 372 |
+
// Radio ๋ฒํผ ์ค์์ ํด๋น value๋ฅผ ๊ฐ์ง ํญ๋ชฉ์ ์ฐพ์ ์ ํ ์ด๋ฒคํธ ๋ฐ์
|
| 373 |
const radio = document.querySelector(`input[type="radio"][value="${spaceId}"]`);
|
| 374 |
if (radio) {
|
| 375 |
radio.checked = true;
|
|
|
|
| 407 |
- Make data-driven decisions about your AI projects
|
| 408 |
- Stay ahead of the curve in AI application development
|
| 409 |
|
| 410 |
+
Our dashboard provides a comprehensive view of the Hugging Face Spaces ecosystem,
|
| 411 |
+
helping developers, researchers, and enthusiasts track and understand the dynamics of popular AI applications.
|
| 412 |
+
Whether you're monitoring your own Space's performance or discovering new trending applications,
|
| 413 |
+
HF Space Ranking Tracker offers the insights you need.
|
| 414 |
|
| 415 |
+
Experience the pulse of the AI community through our daily updated rankings and discover
|
| 416 |
+
what's making waves in the world of practical AI applications.
|
| 417 |
""")
|
| 418 |
+
|
| 419 |
+
# ์คํ์ด์ค ์ ํ์ ์ฐจํธ/์ ๋ณด ์
๋ฐ์ดํธ
|
| 420 |
space_selection.change(
|
| 421 |
fn=update_display,
|
| 422 |
inputs=[space_selection],
|
|
|
|
| 425 |
)
|
| 426 |
|
| 427 |
if __name__ == "__main__":
|
| 428 |
+
demo.launch(share=True)
|