Spaces:
Sleeping
Sleeping
| checkpoint_config = dict(interval=10) | |
| log_config = dict(interval=50, hooks=[dict(type='TextLoggerHook')]) | |
| log_level = 'INFO' | |
| load_from = None | |
| resume_from = None | |
| dist_params = dict(backend='nccl') | |
| workflow = [('train', 1)] | |
| opencv_num_threads = 0 | |
| mp_start_method = 'fork' | |
| dataset_info = dict( | |
| dataset_name='coco', | |
| paper_info=dict( | |
| author= | |
| 'Lin, Tsung-Yi and Maire, Michael and Belongie, Serge and Hays, James and Perona, Pietro and Ramanan, Deva and Doll{\'a}r, Piotr and Zitnick, C Lawrence', | |
| title='Microsoft coco: Common objects in context', | |
| container='European conference on computer vision', | |
| year='2014', | |
| homepage='http://cocodataset.org/'), | |
| keypoint_info=dict({ | |
| 0: | |
| dict(name='nose', id=0, color=[51, 153, 255], type='upper', swap=''), | |
| 1: | |
| dict( | |
| name='left_eye', | |
| id=1, | |
| color=[51, 153, 255], | |
| type='upper', | |
| swap='right_eye'), | |
| 2: | |
| dict( | |
| name='right_eye', | |
| id=2, | |
| color=[51, 153, 255], | |
| type='upper', | |
| swap='left_eye'), | |
| 3: | |
| dict( | |
| name='left_ear', | |
| id=3, | |
| color=[51, 153, 255], | |
| type='upper', | |
| swap='right_ear'), | |
| 4: | |
| dict( | |
| name='right_ear', | |
| id=4, | |
| color=[51, 153, 255], | |
| type='upper', | |
| swap='left_ear'), | |
| 5: | |
| dict( | |
| name='left_shoulder', | |
| id=5, | |
| color=[0, 255, 0], | |
| type='upper', | |
| swap='right_shoulder'), | |
| 6: | |
| dict( | |
| name='right_shoulder', | |
| id=6, | |
| color=[255, 128, 0], | |
| type='upper', | |
| swap='left_shoulder'), | |
| 7: | |
| dict( | |
| name='left_elbow', | |
| id=7, | |
| color=[0, 255, 0], | |
| type='upper', | |
| swap='right_elbow'), | |
| 8: | |
| dict( | |
| name='right_elbow', | |
| id=8, | |
| color=[255, 128, 0], | |
| type='upper', | |
| swap='left_elbow'), | |
| 9: | |
| dict( | |
| name='left_wrist', | |
| id=9, | |
| color=[0, 255, 0], | |
| type='upper', | |
| swap='right_wrist'), | |
| 10: | |
| dict( | |
| name='right_wrist', | |
| id=10, | |
| color=[255, 128, 0], | |
| type='upper', | |
| swap='left_wrist'), | |
| 11: | |
| dict( | |
| name='left_hip', | |
| id=11, | |
| color=[0, 255, 0], | |
| type='lower', | |
| swap='right_hip'), | |
| 12: | |
| dict( | |
| name='right_hip', | |
| id=12, | |
| color=[255, 128, 0], | |
| type='lower', | |
| swap='left_hip'), | |
| 13: | |
| dict( | |
| name='left_knee', | |
| id=13, | |
| color=[0, 255, 0], | |
| type='lower', | |
| swap='right_knee'), | |
| 14: | |
| dict( | |
| name='right_knee', | |
| id=14, | |
| color=[255, 128, 0], | |
| type='lower', | |
| swap='left_knee'), | |
| 15: | |
| dict( | |
| name='left_ankle', | |
| id=15, | |
| color=[0, 255, 0], | |
| type='lower', | |
| swap='right_ankle'), | |
| 16: | |
| dict( | |
| name='right_ankle', | |
| id=16, | |
| color=[255, 128, 0], | |
| type='lower', | |
| swap='left_ankle') | |
| }), | |
| skeleton_info=dict({ | |
| 0: | |
| dict(link=('left_ankle', 'left_knee'), id=0, color=[0, 255, 0]), | |
| 1: | |
| dict(link=('left_knee', 'left_hip'), id=1, color=[0, 255, 0]), | |
| 2: | |
| dict(link=('right_ankle', 'right_knee'), id=2, color=[255, 128, 0]), | |
| 3: | |
| dict(link=('right_knee', 'right_hip'), id=3, color=[255, 128, 0]), | |
| 4: | |
| dict(link=('left_hip', 'right_hip'), id=4, color=[51, 153, 255]), | |
| 5: | |
| dict(link=('left_shoulder', 'left_hip'), id=5, color=[51, 153, 255]), | |
| 6: | |
| dict(link=('right_shoulder', 'right_hip'), id=6, color=[51, 153, 255]), | |
| 7: | |
| dict( | |
| link=('left_shoulder', 'right_shoulder'), | |
| id=7, | |
| color=[51, 153, 255]), | |
| 8: | |
| dict(link=('left_shoulder', 'left_elbow'), id=8, color=[0, 255, 0]), | |
| 9: | |
| dict( | |
| link=('right_shoulder', 'right_elbow'), id=9, color=[255, 128, 0]), | |
| 10: | |
| dict(link=('left_elbow', 'left_wrist'), id=10, color=[0, 255, 0]), | |
| 11: | |
| dict(link=('right_elbow', 'right_wrist'), id=11, color=[255, 128, 0]), | |
| 12: | |
| dict(link=('left_eye', 'right_eye'), id=12, color=[51, 153, 255]), | |
| 13: | |
| dict(link=('nose', 'left_eye'), id=13, color=[51, 153, 255]), | |
| 14: | |
| dict(link=('nose', 'right_eye'), id=14, color=[51, 153, 255]), | |
| 15: | |
| dict(link=('left_eye', 'left_ear'), id=15, color=[51, 153, 255]), | |
| 16: | |
| dict(link=('right_eye', 'right_ear'), id=16, color=[51, 153, 255]), | |
| 17: | |
| dict(link=('left_ear', 'left_shoulder'), id=17, color=[51, 153, 255]), | |
| 18: | |
| dict( | |
| link=('right_ear', 'right_shoulder'), id=18, color=[51, 153, 255]) | |
| }), | |
| joint_weights=[ | |
| 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.2, 1.2, 1.5, 1.5, 1.0, 1.0, 1.2, | |
| 1.2, 1.5, 1.5 | |
| ], | |
| sigmas=[ | |
| 0.026, 0.025, 0.025, 0.035, 0.035, 0.079, 0.079, 0.072, 0.072, 0.062, | |
| 0.062, 0.107, 0.107, 0.087, 0.087, 0.089, 0.089 | |
| ]) | |
| evaluation = dict(interval=10, metric='mAP', save_best='AP') | |
| optimizer = dict(type='Adam', lr=0.0005) | |
| optimizer_config = dict(grad_clip=None) | |
| lr_config = dict( | |
| policy='step', | |
| warmup='linear', | |
| warmup_iters=500, | |
| warmup_ratio=0.001, | |
| step=[170, 200]) | |
| total_epochs = 210 | |
| channel_cfg = dict( | |
| num_output_channels=17, | |
| dataset_joints=17, | |
| dataset_channel=[[ | |
| 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 | |
| ]], | |
| inference_channel=[ | |
| 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 | |
| ]) | |
| model = dict( | |
| type='TopDown', | |
| pretrained= | |
| 'https://download.openmmlab.com/mmpose/pretrain_models/hrnet_w48-8ef0771d.pth', | |
| backbone=dict( | |
| type='HRNet', | |
| in_channels=3, | |
| extra=dict( | |
| stage1=dict( | |
| num_modules=1, | |
| num_branches=1, | |
| block='BOTTLENECK', | |
| num_blocks=(4, ), | |
| num_channels=(64, )), | |
| stage2=dict( | |
| num_modules=1, | |
| num_branches=2, | |
| block='BASIC', | |
| num_blocks=(4, 4), | |
| num_channels=(48, 96)), | |
| stage3=dict( | |
| num_modules=4, | |
| num_branches=3, | |
| block='BASIC', | |
| num_blocks=(4, 4, 4), | |
| num_channels=(48, 96, 192)), | |
| stage4=dict( | |
| num_modules=3, | |
| num_branches=4, | |
| block='BASIC', | |
| num_blocks=(4, 4, 4, 4), | |
| num_channels=(48, 96, 192, 384)))), | |
| keypoint_head=dict( | |
| type='TopdownHeatmapSimpleHead', | |
| in_channels=48, | |
| out_channels=17, | |
| num_deconv_layers=0, | |
| extra=dict(final_conv_kernel=1), | |
| loss_keypoint=dict(type='JointsMSELoss', use_target_weight=True)), | |
| train_cfg=dict(), | |
| test_cfg=dict( | |
| flip_test=True, | |
| post_process='default', | |
| shift_heatmap=True, | |
| modulate_kernel=11)) | |
| data_cfg = dict( | |
| image_size=[192, 256], | |
| heatmap_size=[48, 64], | |
| num_output_channels=17, | |
| num_joints=17, | |
| dataset_channel=[[ | |
| 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 | |
| ]], | |
| inference_channel=[ | |
| 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 | |
| ], | |
| soft_nms=False, | |
| nms_thr=1.0, | |
| oks_thr=0.9, | |
| vis_thr=0.2, | |
| use_gt_bbox=False, | |
| det_bbox_thr=0.0, | |
| bbox_file= | |
| 'data/coco/person_detection_results/COCO_val2017_detections_AP_H_56_person.json' | |
| ) | |
| train_pipeline = [ | |
| dict(type='LoadImageFromFile'), | |
| dict(type='TopDownRandomFlip', flip_prob=0.5), | |
| dict( | |
| type='TopDownHalfBodyTransform', | |
| num_joints_half_body=8, | |
| prob_half_body=0.3), | |
| dict( | |
| type='TopDownGetRandomScaleRotation', rot_factor=40, scale_factor=0.5), | |
| dict(type='TopDownAffine'), | |
| dict(type='ToTensor'), | |
| dict( | |
| type='NormalizeTensor', | |
| mean=[0.485, 0.456, 0.406], | |
| std=[0.229, 0.224, 0.225]), | |
| dict(type='TopDownGenerateTarget', sigma=2), | |
| dict( | |
| type='Collect', | |
| keys=['img', 'target', 'target_weight'], | |
| meta_keys=[ | |
| 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale', | |
| 'rotation', 'bbox_score', 'flip_pairs' | |
| ]) | |
| ] | |
| val_pipeline = [ | |
| dict(type='LoadImageFromFile'), | |
| dict(type='TopDownAffine'), | |
| dict(type='ToTensor'), | |
| dict( | |
| type='NormalizeTensor', | |
| mean=[0.485, 0.456, 0.406], | |
| std=[0.229, 0.224, 0.225]), | |
| dict( | |
| type='Collect', | |
| keys=['img'], | |
| meta_keys=[ | |
| 'image_file', 'center', 'scale', 'rotation', 'bbox_score', | |
| 'flip_pairs' | |
| ]) | |
| ] | |
| test_pipeline = [ | |
| dict(type='LoadImageFromFile'), | |
| dict(type='TopDownAffine'), | |
| dict(type='ToTensor'), | |
| dict( | |
| type='NormalizeTensor', | |
| mean=[0.485, 0.456, 0.406], | |
| std=[0.229, 0.224, 0.225]), | |
| dict( | |
| type='Collect', | |
| keys=['img'], | |
| meta_keys=[ | |
| 'image_file', 'center', 'scale', 'rotation', 'bbox_score', | |
| 'flip_pairs' | |
| ]) | |
| ] | |
| data_root = 'data/coco' | |
| data = dict( | |
| samples_per_gpu=32, | |
| workers_per_gpu=2, | |
| val_dataloader=dict(samples_per_gpu=32), | |
| test_dataloader=dict(samples_per_gpu=32), | |
| train=dict( | |
| type='TopDownCocoDataset', | |
| ann_file='data/coco/annotations/person_keypoints_train2017.json', | |
| img_prefix='data/coco/train2017/', | |
| data_cfg=dict( | |
| image_size=[192, 256], | |
| heatmap_size=[48, 64], | |
| num_output_channels=17, | |
| num_joints=17, | |
| dataset_channel=[[ | |
| 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 | |
| ]], | |
| inference_channel=[ | |
| 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 | |
| ], | |
| soft_nms=False, | |
| nms_thr=1.0, | |
| oks_thr=0.9, | |
| vis_thr=0.2, | |
| use_gt_bbox=False, | |
| det_bbox_thr=0.0, | |
| bbox_file= | |
| 'data/coco/person_detection_results/COCO_val2017_detections_AP_H_56_person.json' | |
| ), | |
| pipeline=[ | |
| dict(type='LoadImageFromFile'), | |
| dict(type='TopDownRandomFlip', flip_prob=0.5), | |
| dict( | |
| type='TopDownHalfBodyTransform', | |
| num_joints_half_body=8, | |
| prob_half_body=0.3), | |
| dict( | |
| type='TopDownGetRandomScaleRotation', | |
| rot_factor=40, | |
| scale_factor=0.5), | |
| dict(type='TopDownAffine'), | |
| dict(type='ToTensor'), | |
| dict( | |
| type='NormalizeTensor', | |
| mean=[0.485, 0.456, 0.406], | |
| std=[0.229, 0.224, 0.225]), | |
| dict(type='TopDownGenerateTarget', sigma=2), | |
| dict( | |
| type='Collect', | |
| keys=['img', 'target', 'target_weight'], | |
| meta_keys=[ | |
| 'image_file', 'joints_3d', 'joints_3d_visible', 'center', | |
| 'scale', 'rotation', 'bbox_score', 'flip_pairs' | |
| ]) | |
| ], | |
| dataset_info=dict( | |
| dataset_name='coco', | |
| paper_info=dict( | |
| author= | |
| 'Lin, Tsung-Yi and Maire, Michael and Belongie, Serge and Hays, James and Perona, Pietro and Ramanan, Deva and Doll{\'a}r, Piotr and Zitnick, C Lawrence', | |
| title='Microsoft coco: Common objects in context', | |
| container='European conference on computer vision', | |
| year='2014', | |
| homepage='http://cocodataset.org/'), | |
| keypoint_info=dict({ | |
| 0: | |
| dict( | |
| name='nose', | |
| id=0, | |
| color=[51, 153, 255], | |
| type='upper', | |
| swap=''), | |
| 1: | |
| dict( | |
| name='left_eye', | |
| id=1, | |
| color=[51, 153, 255], | |
| type='upper', | |
| swap='right_eye'), | |
| 2: | |
| dict( | |
| name='right_eye', | |
| id=2, | |
| color=[51, 153, 255], | |
| type='upper', | |
| swap='left_eye'), | |
| 3: | |
| dict( | |
| name='left_ear', | |
| id=3, | |
| color=[51, 153, 255], | |
| type='upper', | |
| swap='right_ear'), | |
| 4: | |
| dict( | |
| name='right_ear', | |
| id=4, | |
| color=[51, 153, 255], | |
| type='upper', | |
| swap='left_ear'), | |
| 5: | |
| dict( | |
| name='left_shoulder', | |
| id=5, | |
| color=[0, 255, 0], | |
| type='upper', | |
| swap='right_shoulder'), | |
| 6: | |
| dict( | |
| name='right_shoulder', | |
| id=6, | |
| color=[255, 128, 0], | |
| type='upper', | |
| swap='left_shoulder'), | |
| 7: | |
| dict( | |
| name='left_elbow', | |
| id=7, | |
| color=[0, 255, 0], | |
| type='upper', | |
| swap='right_elbow'), | |
| 8: | |
| dict( | |
| name='right_elbow', | |
| id=8, | |
| color=[255, 128, 0], | |
| type='upper', | |
| swap='left_elbow'), | |
| 9: | |
| dict( | |
| name='left_wrist', | |
| id=9, | |
| color=[0, 255, 0], | |
| type='upper', | |
| swap='right_wrist'), | |
| 10: | |
| dict( | |
| name='right_wrist', | |
| id=10, | |
| color=[255, 128, 0], | |
| type='upper', | |
| swap='left_wrist'), | |
| 11: | |
| dict( | |
| name='left_hip', | |
| id=11, | |
| color=[0, 255, 0], | |
| type='lower', | |
| swap='right_hip'), | |
| 12: | |
| dict( | |
| name='right_hip', | |
| id=12, | |
| color=[255, 128, 0], | |
| type='lower', | |
| swap='left_hip'), | |
| 13: | |
| dict( | |
| name='left_knee', | |
| id=13, | |
| color=[0, 255, 0], | |
| type='lower', | |
| swap='right_knee'), | |
| 14: | |
| dict( | |
| name='right_knee', | |
| id=14, | |
| color=[255, 128, 0], | |
| type='lower', | |
| swap='left_knee'), | |
| 15: | |
| dict( | |
| name='left_ankle', | |
| id=15, | |
| color=[0, 255, 0], | |
| type='lower', | |
| swap='right_ankle'), | |
| 16: | |
| dict( | |
| name='right_ankle', | |
| id=16, | |
| color=[255, 128, 0], | |
| type='lower', | |
| swap='left_ankle') | |
| }), | |
| skeleton_info=dict({ | |
| 0: | |
| dict( | |
| link=('left_ankle', 'left_knee'), id=0, color=[0, 255, 0]), | |
| 1: | |
| dict(link=('left_knee', 'left_hip'), id=1, color=[0, 255, 0]), | |
| 2: | |
| dict( | |
| link=('right_ankle', 'right_knee'), | |
| id=2, | |
| color=[255, 128, 0]), | |
| 3: | |
| dict( | |
| link=('right_knee', 'right_hip'), | |
| id=3, | |
| color=[255, 128, 0]), | |
| 4: | |
| dict( | |
| link=('left_hip', 'right_hip'), id=4, color=[51, 153, | |
| 255]), | |
| 5: | |
| dict( | |
| link=('left_shoulder', 'left_hip'), | |
| id=5, | |
| color=[51, 153, 255]), | |
| 6: | |
| dict( | |
| link=('right_shoulder', 'right_hip'), | |
| id=6, | |
| color=[51, 153, 255]), | |
| 7: | |
| dict( | |
| link=('left_shoulder', 'right_shoulder'), | |
| id=7, | |
| color=[51, 153, 255]), | |
| 8: | |
| dict( | |
| link=('left_shoulder', 'left_elbow'), | |
| id=8, | |
| color=[0, 255, 0]), | |
| 9: | |
| dict( | |
| link=('right_shoulder', 'right_elbow'), | |
| id=9, | |
| color=[255, 128, 0]), | |
| 10: | |
| dict( | |
| link=('left_elbow', 'left_wrist'), | |
| id=10, | |
| color=[0, 255, 0]), | |
| 11: | |
| dict( | |
| link=('right_elbow', 'right_wrist'), | |
| id=11, | |
| color=[255, 128, 0]), | |
| 12: | |
| dict( | |
| link=('left_eye', 'right_eye'), | |
| id=12, | |
| color=[51, 153, 255]), | |
| 13: | |
| dict(link=('nose', 'left_eye'), id=13, color=[51, 153, 255]), | |
| 14: | |
| dict(link=('nose', 'right_eye'), id=14, color=[51, 153, 255]), | |
| 15: | |
| dict( | |
| link=('left_eye', 'left_ear'), id=15, color=[51, 153, | |
| 255]), | |
| 16: | |
| dict( | |
| link=('right_eye', 'right_ear'), | |
| id=16, | |
| color=[51, 153, 255]), | |
| 17: | |
| dict( | |
| link=('left_ear', 'left_shoulder'), | |
| id=17, | |
| color=[51, 153, 255]), | |
| 18: | |
| dict( | |
| link=('right_ear', 'right_shoulder'), | |
| id=18, | |
| color=[51, 153, 255]) | |
| }), | |
| joint_weights=[ | |
| 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.2, 1.2, 1.5, 1.5, 1.0, | |
| 1.0, 1.2, 1.2, 1.5, 1.5 | |
| ], | |
| sigmas=[ | |
| 0.026, 0.025, 0.025, 0.035, 0.035, 0.079, 0.079, 0.072, 0.072, | |
| 0.062, 0.062, 0.107, 0.107, 0.087, 0.087, 0.089, 0.089 | |
| ])), | |
| val=dict( | |
| type='TopDownCocoDataset', | |
| ann_file='data/coco/annotations/person_keypoints_val2017.json', | |
| img_prefix='data/coco/val2017/', | |
| data_cfg=dict( | |
| image_size=[192, 256], | |
| heatmap_size=[48, 64], | |
| num_output_channels=17, | |
| num_joints=17, | |
| dataset_channel=[[ | |
| 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 | |
| ]], | |
| inference_channel=[ | |
| 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 | |
| ], | |
| soft_nms=False, | |
| nms_thr=1.0, | |
| oks_thr=0.9, | |
| vis_thr=0.2, | |
| use_gt_bbox=False, | |
| det_bbox_thr=0.0, | |
| bbox_file= | |
| 'data/coco/person_detection_results/COCO_val2017_detections_AP_H_56_person.json' | |
| ), | |
| pipeline=[ | |
| dict(type='LoadImageFromFile'), | |
| dict(type='TopDownAffine'), | |
| dict(type='ToTensor'), | |
| dict( | |
| type='NormalizeTensor', | |
| mean=[0.485, 0.456, 0.406], | |
| std=[0.229, 0.224, 0.225]), | |
| dict( | |
| type='Collect', | |
| keys=['img'], | |
| meta_keys=[ | |
| 'image_file', 'center', 'scale', 'rotation', 'bbox_score', | |
| 'flip_pairs' | |
| ]) | |
| ], | |
| dataset_info=dict( | |
| dataset_name='coco', | |
| paper_info=dict( | |
| author= | |
| 'Lin, Tsung-Yi and Maire, Michael and Belongie, Serge and Hays, James and Perona, Pietro and Ramanan, Deva and Doll{\'a}r, Piotr and Zitnick, C Lawrence', | |
| title='Microsoft coco: Common objects in context', | |
| container='European conference on computer vision', | |
| year='2014', | |
| homepage='http://cocodataset.org/'), | |
| keypoint_info=dict({ | |
| 0: | |
| dict( | |
| name='nose', | |
| id=0, | |
| color=[51, 153, 255], | |
| type='upper', | |
| swap=''), | |
| 1: | |
| dict( | |
| name='left_eye', | |
| id=1, | |
| color=[51, 153, 255], | |
| type='upper', | |
| swap='right_eye'), | |
| 2: | |
| dict( | |
| name='right_eye', | |
| id=2, | |
| color=[51, 153, 255], | |
| type='upper', | |
| swap='left_eye'), | |
| 3: | |
| dict( | |
| name='left_ear', | |
| id=3, | |
| color=[51, 153, 255], | |
| type='upper', | |
| swap='right_ear'), | |
| 4: | |
| dict( | |
| name='right_ear', | |
| id=4, | |
| color=[51, 153, 255], | |
| type='upper', | |
| swap='left_ear'), | |
| 5: | |
| dict( | |
| name='left_shoulder', | |
| id=5, | |
| color=[0, 255, 0], | |
| type='upper', | |
| swap='right_shoulder'), | |
| 6: | |
| dict( | |
| name='right_shoulder', | |
| id=6, | |
| color=[255, 128, 0], | |
| type='upper', | |
| swap='left_shoulder'), | |
| 7: | |
| dict( | |
| name='left_elbow', | |
| id=7, | |
| color=[0, 255, 0], | |
| type='upper', | |
| swap='right_elbow'), | |
| 8: | |
| dict( | |
| name='right_elbow', | |
| id=8, | |
| color=[255, 128, 0], | |
| type='upper', | |
| swap='left_elbow'), | |
| 9: | |
| dict( | |
| name='left_wrist', | |
| id=9, | |
| color=[0, 255, 0], | |
| type='upper', | |
| swap='right_wrist'), | |
| 10: | |
| dict( | |
| name='right_wrist', | |
| id=10, | |
| color=[255, 128, 0], | |
| type='upper', | |
| swap='left_wrist'), | |
| 11: | |
| dict( | |
| name='left_hip', | |
| id=11, | |
| color=[0, 255, 0], | |
| type='lower', | |
| swap='right_hip'), | |
| 12: | |
| dict( | |
| name='right_hip', | |
| id=12, | |
| color=[255, 128, 0], | |
| type='lower', | |
| swap='left_hip'), | |
| 13: | |
| dict( | |
| name='left_knee', | |
| id=13, | |
| color=[0, 255, 0], | |
| type='lower', | |
| swap='right_knee'), | |
| 14: | |
| dict( | |
| name='right_knee', | |
| id=14, | |
| color=[255, 128, 0], | |
| type='lower', | |
| swap='left_knee'), | |
| 15: | |
| dict( | |
| name='left_ankle', | |
| id=15, | |
| color=[0, 255, 0], | |
| type='lower', | |
| swap='right_ankle'), | |
| 16: | |
| dict( | |
| name='right_ankle', | |
| id=16, | |
| color=[255, 128, 0], | |
| type='lower', | |
| swap='left_ankle') | |
| }), | |
| skeleton_info=dict({ | |
| 0: | |
| dict( | |
| link=('left_ankle', 'left_knee'), id=0, color=[0, 255, 0]), | |
| 1: | |
| dict(link=('left_knee', 'left_hip'), id=1, color=[0, 255, 0]), | |
| 2: | |
| dict( | |
| link=('right_ankle', 'right_knee'), | |
| id=2, | |
| color=[255, 128, 0]), | |
| 3: | |
| dict( | |
| link=('right_knee', 'right_hip'), | |
| id=3, | |
| color=[255, 128, 0]), | |
| 4: | |
| dict( | |
| link=('left_hip', 'right_hip'), id=4, color=[51, 153, | |
| 255]), | |
| 5: | |
| dict( | |
| link=('left_shoulder', 'left_hip'), | |
| id=5, | |
| color=[51, 153, 255]), | |
| 6: | |
| dict( | |
| link=('right_shoulder', 'right_hip'), | |
| id=6, | |
| color=[51, 153, 255]), | |
| 7: | |
| dict( | |
| link=('left_shoulder', 'right_shoulder'), | |
| id=7, | |
| color=[51, 153, 255]), | |
| 8: | |
| dict( | |
| link=('left_shoulder', 'left_elbow'), | |
| id=8, | |
| color=[0, 255, 0]), | |
| 9: | |
| dict( | |
| link=('right_shoulder', 'right_elbow'), | |
| id=9, | |
| color=[255, 128, 0]), | |
| 10: | |
| dict( | |
| link=('left_elbow', 'left_wrist'), | |
| id=10, | |
| color=[0, 255, 0]), | |
| 11: | |
| dict( | |
| link=('right_elbow', 'right_wrist'), | |
| id=11, | |
| color=[255, 128, 0]), | |
| 12: | |
| dict( | |
| link=('left_eye', 'right_eye'), | |
| id=12, | |
| color=[51, 153, 255]), | |
| 13: | |
| dict(link=('nose', 'left_eye'), id=13, color=[51, 153, 255]), | |
| 14: | |
| dict(link=('nose', 'right_eye'), id=14, color=[51, 153, 255]), | |
| 15: | |
| dict( | |
| link=('left_eye', 'left_ear'), id=15, color=[51, 153, | |
| 255]), | |
| 16: | |
| dict( | |
| link=('right_eye', 'right_ear'), | |
| id=16, | |
| color=[51, 153, 255]), | |
| 17: | |
| dict( | |
| link=('left_ear', 'left_shoulder'), | |
| id=17, | |
| color=[51, 153, 255]), | |
| 18: | |
| dict( | |
| link=('right_ear', 'right_shoulder'), | |
| id=18, | |
| color=[51, 153, 255]) | |
| }), | |
| joint_weights=[ | |
| 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.2, 1.2, 1.5, 1.5, 1.0, | |
| 1.0, 1.2, 1.2, 1.5, 1.5 | |
| ], | |
| sigmas=[ | |
| 0.026, 0.025, 0.025, 0.035, 0.035, 0.079, 0.079, 0.072, 0.072, | |
| 0.062, 0.062, 0.107, 0.107, 0.087, 0.087, 0.089, 0.089 | |
| ])), | |
| test=dict( | |
| type='TopDownCocoDataset', | |
| ann_file='data/coco/annotations/person_keypoints_val2017.json', | |
| img_prefix='data/coco/val2017/', | |
| data_cfg=dict( | |
| image_size=[192, 256], | |
| heatmap_size=[48, 64], | |
| num_output_channels=17, | |
| num_joints=17, | |
| dataset_channel=[[ | |
| 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 | |
| ]], | |
| inference_channel=[ | |
| 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 | |
| ], | |
| soft_nms=False, | |
| nms_thr=1.0, | |
| oks_thr=0.9, | |
| vis_thr=0.2, | |
| use_gt_bbox=False, | |
| det_bbox_thr=0.0, | |
| bbox_file= | |
| 'data/coco/person_detection_results/COCO_val2017_detections_AP_H_56_person.json' | |
| ), | |
| pipeline=[ | |
| dict(type='LoadImageFromFile'), | |
| dict(type='TopDownAffine'), | |
| dict(type='ToTensor'), | |
| dict( | |
| type='NormalizeTensor', | |
| mean=[0.485, 0.456, 0.406], | |
| std=[0.229, 0.224, 0.225]), | |
| dict( | |
| type='Collect', | |
| keys=['img'], | |
| meta_keys=[ | |
| 'image_file', 'center', 'scale', 'rotation', 'bbox_score', | |
| 'flip_pairs' | |
| ]) | |
| ], | |
| dataset_info=dict( | |
| dataset_name='coco', | |
| paper_info=dict( | |
| author= | |
| 'Lin, Tsung-Yi and Maire, Michael and Belongie, Serge and Hays, James and Perona, Pietro and Ramanan, Deva and Doll{\'a}r, Piotr and Zitnick, C Lawrence', | |
| title='Microsoft coco: Common objects in context', | |
| container='European conference on computer vision', | |
| year='2014', | |
| homepage='http://cocodataset.org/'), | |
| keypoint_info=dict({ | |
| 0: | |
| dict( | |
| name='nose', | |
| id=0, | |
| color=[51, 153, 255], | |
| type='upper', | |
| swap=''), | |
| 1: | |
| dict( | |
| name='left_eye', | |
| id=1, | |
| color=[51, 153, 255], | |
| type='upper', | |
| swap='right_eye'), | |
| 2: | |
| dict( | |
| name='right_eye', | |
| id=2, | |
| color=[51, 153, 255], | |
| type='upper', | |
| swap='left_eye'), | |
| 3: | |
| dict( | |
| name='left_ear', | |
| id=3, | |
| color=[51, 153, 255], | |
| type='upper', | |
| swap='right_ear'), | |
| 4: | |
| dict( | |
| name='right_ear', | |
| id=4, | |
| color=[51, 153, 255], | |
| type='upper', | |
| swap='left_ear'), | |
| 5: | |
| dict( | |
| name='left_shoulder', | |
| id=5, | |
| color=[0, 255, 0], | |
| type='upper', | |
| swap='right_shoulder'), | |
| 6: | |
| dict( | |
| name='right_shoulder', | |
| id=6, | |
| color=[255, 128, 0], | |
| type='upper', | |
| swap='left_shoulder'), | |
| 7: | |
| dict( | |
| name='left_elbow', | |
| id=7, | |
| color=[0, 255, 0], | |
| type='upper', | |
| swap='right_elbow'), | |
| 8: | |
| dict( | |
| name='right_elbow', | |
| id=8, | |
| color=[255, 128, 0], | |
| type='upper', | |
| swap='left_elbow'), | |
| 9: | |
| dict( | |
| name='left_wrist', | |
| id=9, | |
| color=[0, 255, 0], | |
| type='upper', | |
| swap='right_wrist'), | |
| 10: | |
| dict( | |
| name='right_wrist', | |
| id=10, | |
| color=[255, 128, 0], | |
| type='upper', | |
| swap='left_wrist'), | |
| 11: | |
| dict( | |
| name='left_hip', | |
| id=11, | |
| color=[0, 255, 0], | |
| type='lower', | |
| swap='right_hip'), | |
| 12: | |
| dict( | |
| name='right_hip', | |
| id=12, | |
| color=[255, 128, 0], | |
| type='lower', | |
| swap='left_hip'), | |
| 13: | |
| dict( | |
| name='left_knee', | |
| id=13, | |
| color=[0, 255, 0], | |
| type='lower', | |
| swap='right_knee'), | |
| 14: | |
| dict( | |
| name='right_knee', | |
| id=14, | |
| color=[255, 128, 0], | |
| type='lower', | |
| swap='left_knee'), | |
| 15: | |
| dict( | |
| name='left_ankle', | |
| id=15, | |
| color=[0, 255, 0], | |
| type='lower', | |
| swap='right_ankle'), | |
| 16: | |
| dict( | |
| name='right_ankle', | |
| id=16, | |
| color=[255, 128, 0], | |
| type='lower', | |
| swap='left_ankle') | |
| }), | |
| skeleton_info=dict({ | |
| 0: | |
| dict( | |
| link=('left_ankle', 'left_knee'), id=0, color=[0, 255, 0]), | |
| 1: | |
| dict(link=('left_knee', 'left_hip'), id=1, color=[0, 255, 0]), | |
| 2: | |
| dict( | |
| link=('right_ankle', 'right_knee'), | |
| id=2, | |
| color=[255, 128, 0]), | |
| 3: | |
| dict( | |
| link=('right_knee', 'right_hip'), | |
| id=3, | |
| color=[255, 128, 0]), | |
| 4: | |
| dict( | |
| link=('left_hip', 'right_hip'), id=4, color=[51, 153, | |
| 255]), | |
| 5: | |
| dict( | |
| link=('left_shoulder', 'left_hip'), | |
| id=5, | |
| color=[51, 153, 255]), | |
| 6: | |
| dict( | |
| link=('right_shoulder', 'right_hip'), | |
| id=6, | |
| color=[51, 153, 255]), | |
| 7: | |
| dict( | |
| link=('left_shoulder', 'right_shoulder'), | |
| id=7, | |
| color=[51, 153, 255]), | |
| 8: | |
| dict( | |
| link=('left_shoulder', 'left_elbow'), | |
| id=8, | |
| color=[0, 255, 0]), | |
| 9: | |
| dict( | |
| link=('right_shoulder', 'right_elbow'), | |
| id=9, | |
| color=[255, 128, 0]), | |
| 10: | |
| dict( | |
| link=('left_elbow', 'left_wrist'), | |
| id=10, | |
| color=[0, 255, 0]), | |
| 11: | |
| dict( | |
| link=('right_elbow', 'right_wrist'), | |
| id=11, | |
| color=[255, 128, 0]), | |
| 12: | |
| dict( | |
| link=('left_eye', 'right_eye'), | |
| id=12, | |
| color=[51, 153, 255]), | |
| 13: | |
| dict(link=('nose', 'left_eye'), id=13, color=[51, 153, 255]), | |
| 14: | |
| dict(link=('nose', 'right_eye'), id=14, color=[51, 153, 255]), | |
| 15: | |
| dict( | |
| link=('left_eye', 'left_ear'), id=15, color=[51, 153, | |
| 255]), | |
| 16: | |
| dict( | |
| link=('right_eye', 'right_ear'), | |
| id=16, | |
| color=[51, 153, 255]), | |
| 17: | |
| dict( | |
| link=('left_ear', 'left_shoulder'), | |
| id=17, | |
| color=[51, 153, 255]), | |
| 18: | |
| dict( | |
| link=('right_ear', 'right_shoulder'), | |
| id=18, | |
| color=[51, 153, 255]) | |
| }), | |
| joint_weights=[ | |
| 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.2, 1.2, 1.5, 1.5, 1.0, | |
| 1.0, 1.2, 1.2, 1.5, 1.5 | |
| ], | |
| sigmas=[ | |
| 0.026, 0.025, 0.025, 0.035, 0.035, 0.079, 0.079, 0.072, 0.072, | |
| 0.062, 0.062, 0.107, 0.107, 0.087, 0.087, 0.089, 0.089 | |
| ]))) | |