File size: 5,243 Bytes
ec8ecd4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import json
import pandas as pd
from typing import List, Dict, Any
from config import Config
from tqdm.auto import tqdm


class LegalDataLoader:
    """Load and process legal corpus"""

    def __init__(self):
        self.legal_corpus = None

    def load_legal_corpus(self) -> List[Dict[str, Any]]:
        """Load legal corpus from JSON file"""
        try:
            with open(Config.CORPUS_PATH, "r", encoding="utf-8") as f:
                self.legal_corpus = json.load(f)

            # Handle the case where the corpus is a list of laws with nested articles
            if isinstance(self.legal_corpus, list):
                print(f"Loaded {len(self.legal_corpus)} legal documents")
            else:
                # Handle single law document format
                print(
                    f"Loaded legal document: {self.legal_corpus.get('law_id', 'Unknown')}"
                )
                self.legal_corpus = [self.legal_corpus]

            return self.legal_corpus

        except FileNotFoundError:
            print(f"Legal corpus file not found at {Config.CORPUS_PATH}")
            return []
        except json.JSONEncoder as e:
            print(f"Error parsing JSON file: {e}")
            return []

    def prepare_documents_for_indexing(self) -> List[Dict[str, Any]]:
        """Prepare legal documents for vector indexing"""
        if self.legal_corpus is None:
            self.load_legal_corpus()

        documents = []
        for law in tqdm(self.legal_corpus):
            law_id = law.get("law_id", "")
            articles = law.get("articles", [])

            # Process each article in the law
            for article in articles:
                article_id = article.get("article_id", "")
                title = article.get("title", "")
                content = article.get("text", "")

                if content and content.strip():
                    # Create unique document ID combining law_id and article_id
                    doc_id = (
                        f"{law_id}_{article_id}"
                        if law_id and article_id
                        else article_id
                    )
                    documents.append(
                        {
                            "id": doc_id,
                            "title": title,
                            "content": content,
                            "metadata": {
                                "law_id": law_id,
                                "article_id": article_id,
                                "title": title,
                                "source": "legal_corpus",
                            },
                        }
                    )

        print(f"Prepared {len(documents)} documents for indexing")
        return documents

    def get_document_by_id(self, doc_id: str) -> Dict[str, Any]:
        """Get a specific document by ID"""
        if self.legal_corpus is None:
            self.load_legal_corpus()

        # Handle both formats: "law_id_article_id" or just "article_id"
        for law in self.legal_corpus:
            law_id = law.get("law_id", "")
            articles = law.get("articles", [])

            for article in articles:
                article_id = article.get("article_id", "")
                combined_id = (
                    f"{law_id}_{article_id}" if law_id and article_id else article_id
                )

                if combined_id == doc_id or article_id == doc_id:
                    return {
                        "law_id": law_id,
                        "article_id": article_id,
                        "title": article.get("title", ""),
                        "text": article.get("text", ""),
                        "combined_id": combined_id,
                    }
        return {}

    def search_documents_by_keyword(self, keyword: str) -> List[Dict[str, Any]]:
        """Search documents containing specific keywords"""
        if self.legal_corpus is None:
            self.load_legal_corpus()

        results = []
        keyword_lower = keyword.lower()

        for law in self.legal_corpus:
            law_id = law.get("law_id", "")
            articles = law.get("articles", [])

            for article in articles:
                content = article.get("text", "").lower()
                title = article.get("title", "").lower()

                if keyword_lower in content or keyword_lower in title:
                    article_id = article.get("article_id", "")
                    combined_id = (
                        f"{law_id}_{article_id}"
                        if law_id and article_id
                        else article_id
                    )

                    results.append(
                        {
                            "law_id": law_id,
                            "article_id": article_id,
                            "title": article.get("title", ""),
                            "text": article.get("text", ""),
                            "combined_id": combined_id,
                        }
                    )

        return results