multimodalart HF Staff commited on
Commit
7f6bc4a
Β·
verified Β·
1 Parent(s): b7139f4

Migrate to ZeroGPU

Browse files
Files changed (1) hide show
  1. app.py +137 -140
app.py CHANGED
@@ -1,3 +1,4 @@
 
1
  import numpy as np
2
  from PIL import Image
3
  from huggingface_hub import snapshot_download
@@ -15,148 +16,144 @@ import gradio as gr
15
  # Download checkpoints
16
  snapshot_download(repo_id="franciszzj/Leffa", local_dir="./ckpts")
17
 
18
-
19
- class LeffaPredictor(object):
20
- def __init__(self):
21
- self.mask_predictor = AutoMasker(
22
- densepose_path="./ckpts/densepose",
23
- schp_path="./ckpts/schp",
24
- )
25
-
26
- self.densepose_predictor = DensePosePredictor(
27
- config_path="./ckpts/densepose/densepose_rcnn_R_50_FPN_s1x.yaml",
28
- weights_path="./ckpts/densepose/model_final_162be9.pkl",
29
- )
30
-
31
- self.parsing = Parsing(
32
- atr_path="./ckpts/humanparsing/parsing_atr.onnx",
33
- lip_path="./ckpts/humanparsing/parsing_lip.onnx",
34
- )
35
-
36
- self.openpose = OpenPose(
37
- body_model_path="./ckpts/openpose/body_pose_model.pth",
38
- )
39
-
40
- vt_model_hd = LeffaModel(
41
- pretrained_model_name_or_path="./ckpts/stable-diffusion-inpainting",
42
- pretrained_model="./ckpts/virtual_tryon.pth",
43
- dtype="float16",
44
- )
45
- self.vt_inference_hd = LeffaInference(model=vt_model_hd)
46
-
47
- vt_model_dc = LeffaModel(
48
- pretrained_model_name_or_path="./ckpts/stable-diffusion-inpainting",
49
- pretrained_model="./ckpts/virtual_tryon_dc.pth",
50
- dtype="float16",
51
- )
52
- self.vt_inference_dc = LeffaInference(model=vt_model_dc)
53
-
54
- pt_model = LeffaModel(
55
- pretrained_model_name_or_path="./ckpts/stable-diffusion-xl-1.0-inpainting-0.1",
56
- pretrained_model="./ckpts/pose_transfer.pth",
57
- dtype="float16",
58
- )
59
- self.pt_inference = LeffaInference(model=pt_model)
60
-
61
- def leffa_predict(
62
- self,
63
- src_image_path,
64
- ref_image_path,
65
- control_type,
66
- ref_acceleration=False,
67
- step=50,
68
- scale=2.5,
69
- seed=42,
70
- vt_model_type="viton_hd",
71
- vt_garment_type="upper_body",
72
- vt_repaint=False
73
- ):
74
- assert control_type in [
75
- "virtual_tryon", "pose_transfer"], "Invalid control type: {}".format(control_type)
76
- src_image = Image.open(src_image_path)
77
- ref_image = Image.open(ref_image_path)
78
- src_image = resize_and_center(src_image, 768, 1024)
79
- ref_image = resize_and_center(ref_image, 768, 1024)
80
-
81
- src_image_array = np.array(src_image)
82
-
83
- # Mask
84
- if control_type == "virtual_tryon":
85
- src_image = src_image.convert("RGB")
86
- model_parse, _ = self.parsing(src_image.resize((384, 512)))
87
- keypoints = self.openpose(src_image.resize((384, 512)))
88
- if vt_model_type == "viton_hd":
89
- mask = get_agnostic_mask_hd(
90
- model_parse, keypoints, vt_garment_type)
91
- elif vt_model_type == "dress_code":
92
- mask = get_agnostic_mask_dc(
93
- model_parse, keypoints, vt_garment_type)
94
- mask = mask.resize((768, 1024))
95
- # garment_type_hd = "upper" if vt_garment_type in [
96
- # "upper_body", "dresses"] else "lower"
97
- # mask = self.mask_predictor(src_image, garment_type_hd)["mask"]
98
- elif control_type == "pose_transfer":
99
- mask = Image.fromarray(np.ones_like(src_image_array) * 255)
100
-
101
- # DensePose
102
- if control_type == "virtual_tryon":
103
- if vt_model_type == "viton_hd":
104
- src_image_seg_array = self.densepose_predictor.predict_seg(
105
- src_image_array)[:, :, ::-1]
106
- src_image_seg = Image.fromarray(src_image_seg_array)
107
- densepose = src_image_seg
108
- elif vt_model_type == "dress_code":
109
- src_image_iuv_array = self.densepose_predictor.predict_iuv(
110
- src_image_array)
111
- src_image_seg_array = src_image_iuv_array[:, :, 0:1]
112
- src_image_seg_array = np.concatenate(
113
- [src_image_seg_array] * 3, axis=-1)
114
- src_image_seg = Image.fromarray(src_image_seg_array)
115
- densepose = src_image_seg
116
- elif control_type == "pose_transfer":
117
- src_image_iuv_array = self.densepose_predictor.predict_iuv(
118
  src_image_array)[:, :, ::-1]
119
- src_image_iuv = Image.fromarray(src_image_iuv_array)
120
- densepose = src_image_iuv
121
-
122
- # Leffa
123
- transform = LeffaTransform()
124
-
125
- data = {
126
- "src_image": [src_image],
127
- "ref_image": [ref_image],
128
- "mask": [mask],
129
- "densepose": [densepose],
130
- }
131
- data = transform(data)
132
- if control_type == "virtual_tryon":
133
- if vt_model_type == "viton_hd":
134
- inference = self.vt_inference_hd
135
- elif vt_model_type == "dress_code":
136
- inference = self.vt_inference_dc
137
- elif control_type == "pose_transfer":
138
- inference = self.pt_inference
139
- output = inference(
140
- data,
141
- ref_acceleration=ref_acceleration,
142
- num_inference_steps=step,
143
- guidance_scale=scale,
144
- seed=seed,
145
- repaint=vt_repaint,)
146
- gen_image = output["generated_image"][0]
147
- # gen_image.save("gen_image.png")
148
- return np.array(gen_image), np.array(mask), np.array(densepose)
149
-
150
- def leffa_predict_vt(self, src_image_path, ref_image_path, ref_acceleration, step, scale, seed, vt_model_type, vt_garment_type, vt_repaint):
151
- return self.leffa_predict(src_image_path, ref_image_path, "virtual_tryon", ref_acceleration, step, scale, seed, vt_model_type, vt_garment_type, vt_repaint)
152
-
153
- def leffa_predict_pt(self, src_image_path, ref_image_path, ref_acceleration, step, scale, seed):
154
- return self.leffa_predict(src_image_path, ref_image_path, "pose_transfer", ref_acceleration, step, scale, seed)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
155
 
156
 
157
  if __name__ == "__main__":
158
 
159
- leffa_predictor = LeffaPredictor()
160
  example_dir = "./ckpts/examples"
161
  person1_images = list_dir(f"{example_dir}/person1")
162
  person2_images = list_dir(f"{example_dir}/person2")
@@ -164,7 +161,7 @@ if __name__ == "__main__":
164
 
165
  title = "## Leffa: Learning Flow Fields in Attention for Controllable Person Image Generation"
166
  link = """[πŸ“š Paper](https://arxiv.org/abs/2412.08486) - [πŸ€– Code](https://github.com/franciszzj/Leffa) - [πŸ”₯ Demo](https://huggingface.co/spaces/franciszzj/Leffa) - [πŸ€— Model](https://huggingface.co/franciszzj/Leffa)
167
-
168
  Star ⭐ us if you like it!
169
  """
170
  news = """## News
@@ -277,7 +274,7 @@ if __name__ == "__main__":
277
  height=256,
278
  )
279
 
280
- vt_gen_button.click(fn=leffa_predictor.leffa_predict_vt, inputs=[
281
  vt_src_image, vt_ref_image, vt_ref_acceleration, vt_step, vt_scale, vt_seed, vt_model_type, vt_garment_type, vt_repaint], outputs=[vt_gen_image, vt_mask, vt_densepose])
282
 
283
  with gr.Tab("Control Pose (Pose Transfer)"):
@@ -354,7 +351,7 @@ if __name__ == "__main__":
354
  height=256,
355
  )
356
 
357
- pose_transfer_gen_button.click(fn=leffa_predictor.leffa_predict_pt, inputs=[
358
  pt_src_image, pt_ref_image, pt_ref_acceleration, pt_step, pt_scale, pt_seed], outputs=[pt_gen_image, pt_mask, pt_densepose])
359
 
360
  gr.Markdown(note)
 
1
+ import spaces
2
  import numpy as np
3
  from PIL import Image
4
  from huggingface_hub import snapshot_download
 
16
  # Download checkpoints
17
  snapshot_download(repo_id="franciszzj/Leffa", local_dir="./ckpts")
18
 
19
+ # Initialize models as global variables
20
+ mask_predictor = AutoMasker(
21
+ densepose_path="./ckpts/densepose",
22
+ schp_path="./ckpts/schp",
23
+ )
24
+
25
+ densepose_predictor = DensePosePredictor(
26
+ config_path="./ckpts/densepose/densepose_rcnn_R_50_FPN_s1x.yaml",
27
+ weights_path="./ckpts/densepose/model_final_162be9.pkl",
28
+ )
29
+
30
+ parsing = Parsing(
31
+ atr_path="./ckpts/humanparsing/parsing_atr.onnx",
32
+ lip_path="./ckpts/humanparsing/parsing_lip.onnx",
33
+ )
34
+
35
+ openpose = OpenPose(
36
+ body_model_path="./ckpts/openpose/body_pose_model.pth",
37
+ )
38
+
39
+ vt_model_hd = LeffaModel(
40
+ pretrained_model_name_or_path="./ckpts/stable-diffusion-inpainting",
41
+ pretrained_model="./ckpts/virtual_tryon.pth",
42
+ dtype="float16",
43
+ )
44
+ vt_inference_hd = LeffaInference(model=vt_model_hd)
45
+
46
+ vt_model_dc = LeffaModel(
47
+ pretrained_model_name_or_path="./ckpts/stable-diffusion-inpainting",
48
+ pretrained_model="./ckpts/virtual_tryon_dc.pth",
49
+ dtype="float16",
50
+ )
51
+ vt_inference_dc = LeffaInference(model=vt_model_dc)
52
+
53
+ pt_model = LeffaModel(
54
+ pretrained_model_name_or_path="./ckpts/stable-diffusion-xl-1.0-inpainting-0.1",
55
+ pretrained_model="./ckpts/pose_transfer.pth",
56
+ dtype="float16",
57
+ )
58
+ pt_inference = LeffaInference(model=pt_model)
59
+
60
+
61
+ @spaces.GPU(duration=120)
62
+ def leffa_predict(
63
+ src_image_path,
64
+ ref_image_path,
65
+ control_type,
66
+ ref_acceleration=False,
67
+ step=50,
68
+ scale=2.5,
69
+ seed=42,
70
+ vt_model_type="viton_hd",
71
+ vt_garment_type="upper_body",
72
+ vt_repaint=False,
73
+ ):
74
+ assert control_type in [
75
+ "virtual_tryon", "pose_transfer"], "Invalid control type: {}".format(control_type)
76
+ src_image = Image.open(src_image_path)
77
+ ref_image = Image.open(ref_image_path)
78
+ src_image = resize_and_center(src_image, 768, 1024)
79
+ ref_image = resize_and_center(ref_image, 768, 1024)
80
+
81
+ src_image_array = np.array(src_image)
82
+
83
+ # Mask
84
+ if control_type == "virtual_tryon":
85
+ src_image = src_image.convert("RGB")
86
+ model_parse, _ = parsing(src_image.resize((384, 512)))
87
+ keypoints = openpose(src_image.resize((384, 512)))
88
+ if vt_model_type == "viton_hd":
89
+ mask = get_agnostic_mask_hd(
90
+ model_parse, keypoints, vt_garment_type)
91
+ elif vt_model_type == "dress_code":
92
+ mask = get_agnostic_mask_dc(
93
+ model_parse, keypoints, vt_garment_type)
94
+ mask = mask.resize((768, 1024))
95
+ elif control_type == "pose_transfer":
96
+ mask = Image.fromarray(np.ones_like(src_image_array) * 255)
97
+
98
+ # DensePose
99
+ if control_type == "virtual_tryon":
100
+ if vt_model_type == "viton_hd":
101
+ src_image_seg_array = densepose_predictor.predict_seg(
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
102
  src_image_array)[:, :, ::-1]
103
+ src_image_seg = Image.fromarray(src_image_seg_array)
104
+ densepose = src_image_seg
105
+ elif vt_model_type == "dress_code":
106
+ src_image_iuv_array = densepose_predictor.predict_iuv(
107
+ src_image_array)
108
+ src_image_seg_array = src_image_iuv_array[:, :, 0:1]
109
+ src_image_seg_array = np.concatenate(
110
+ [src_image_seg_array] * 3, axis=-1)
111
+ src_image_seg = Image.fromarray(src_image_seg_array)
112
+ densepose = src_image_seg
113
+ elif control_type == "pose_transfer":
114
+ src_image_iuv_array = densepose_predictor.predict_iuv(
115
+ src_image_array)[:, :, ::-1]
116
+ src_image_iuv = Image.fromarray(src_image_iuv_array)
117
+ densepose = src_image_iuv
118
+
119
+ # Leffa
120
+ transform = LeffaTransform()
121
+
122
+ data = {
123
+ "src_image": [src_image],
124
+ "ref_image": [ref_image],
125
+ "mask": [mask],
126
+ "densepose": [densepose],
127
+ }
128
+ data = transform(data)
129
+ if control_type == "virtual_tryon":
130
+ if vt_model_type == "viton_hd":
131
+ inference = vt_inference_hd
132
+ elif vt_model_type == "dress_code":
133
+ inference = vt_inference_dc
134
+ elif control_type == "pose_transfer":
135
+ inference = pt_inference
136
+ output = inference(
137
+ data,
138
+ ref_acceleration=ref_acceleration,
139
+ num_inference_steps=step,
140
+ guidance_scale=scale,
141
+ seed=seed,
142
+ repaint=vt_repaint,)
143
+ gen_image = output["generated_image"][0]
144
+ return np.array(gen_image), np.array(mask), np.array(densepose)
145
+
146
+
147
+ def leffa_predict_vt(src_image_path, ref_image_path, ref_acceleration, step, scale, seed, vt_model_type, vt_garment_type, vt_repaint):
148
+ return leffa_predict(src_image_path, ref_image_path, "virtual_tryon", ref_acceleration, step, scale, seed, vt_model_type, vt_garment_type, vt_repaint)
149
+
150
+
151
+ def leffa_predict_pt(src_image_path, ref_image_path, ref_acceleration, step, scale, seed):
152
+ return leffa_predict(src_image_path, ref_image_path, "pose_transfer", ref_acceleration, step, scale, seed)
153
 
154
 
155
  if __name__ == "__main__":
156
 
 
157
  example_dir = "./ckpts/examples"
158
  person1_images = list_dir(f"{example_dir}/person1")
159
  person2_images = list_dir(f"{example_dir}/person2")
 
161
 
162
  title = "## Leffa: Learning Flow Fields in Attention for Controllable Person Image Generation"
163
  link = """[πŸ“š Paper](https://arxiv.org/abs/2412.08486) - [πŸ€– Code](https://github.com/franciszzj/Leffa) - [πŸ”₯ Demo](https://huggingface.co/spaces/franciszzj/Leffa) - [πŸ€— Model](https://huggingface.co/franciszzj/Leffa)
164
+
165
  Star ⭐ us if you like it!
166
  """
167
  news = """## News
 
274
  height=256,
275
  )
276
 
277
+ vt_gen_button.click(fn=leffa_predict_vt, inputs=[
278
  vt_src_image, vt_ref_image, vt_ref_acceleration, vt_step, vt_scale, vt_seed, vt_model_type, vt_garment_type, vt_repaint], outputs=[vt_gen_image, vt_mask, vt_densepose])
279
 
280
  with gr.Tab("Control Pose (Pose Transfer)"):
 
351
  height=256,
352
  )
353
 
354
+ pose_transfer_gen_button.click(fn=leffa_predict_pt, inputs=[
355
  pt_src_image, pt_ref_image, pt_ref_acceleration, pt_step, pt_scale, pt_seed], outputs=[pt_gen_image, pt_mask, pt_densepose])
356
 
357
  gr.Markdown(note)