Spaces:
Running
on
Zero
Running
on
Zero
Commit
Β·
e9b3585
1
Parent(s):
04d5d6b
change to float16
Browse files- app.py +5 -2
- leffa/model.py +23 -11
- leffa/pipeline.py +0 -1
app.py
CHANGED
|
@@ -40,18 +40,21 @@ class LeffaPredictor(object):
|
|
| 40 |
vt_model_hd = LeffaModel(
|
| 41 |
pretrained_model_name_or_path="./ckpts/stable-diffusion-inpainting",
|
| 42 |
pretrained_model="./ckpts/virtual_tryon.pth",
|
|
|
|
| 43 |
)
|
| 44 |
self.vt_inference_hd = LeffaInference(model=vt_model_hd)
|
| 45 |
|
| 46 |
vt_model_dc = LeffaModel(
|
| 47 |
pretrained_model_name_or_path="./ckpts/stable-diffusion-inpainting",
|
| 48 |
pretrained_model="./ckpts/virtual_tryon_dc.pth",
|
|
|
|
| 49 |
)
|
| 50 |
self.vt_inference_dc = LeffaInference(model=vt_model_dc)
|
| 51 |
|
| 52 |
pt_model = LeffaModel(
|
| 53 |
pretrained_model_name_or_path="./ckpts/stable-diffusion-xl-1.0-inpainting-0.1",
|
| 54 |
pretrained_model="./ckpts/pose_transfer.pth",
|
|
|
|
| 55 |
)
|
| 56 |
self.pt_inference = LeffaInference(model=pt_model)
|
| 57 |
|
|
@@ -248,7 +251,7 @@ if __name__ == "__main__":
|
|
| 248 |
)
|
| 249 |
|
| 250 |
vt_step = gr.Number(
|
| 251 |
-
label="Inference Steps", minimum=30, maximum=100, step=1, value=
|
| 252 |
|
| 253 |
vt_scale = gr.Number(
|
| 254 |
label="Guidance Scale", minimum=0.1, maximum=5.0, step=0.1, value=2.5)
|
|
@@ -325,7 +328,7 @@ if __name__ == "__main__":
|
|
| 325 |
)
|
| 326 |
|
| 327 |
pt_step = gr.Number(
|
| 328 |
-
label="Inference Steps", minimum=30, maximum=100, step=1, value=
|
| 329 |
|
| 330 |
pt_scale = gr.Number(
|
| 331 |
label="Guidance Scale", minimum=0.1, maximum=5.0, step=0.1, value=2.5)
|
|
|
|
| 40 |
vt_model_hd = LeffaModel(
|
| 41 |
pretrained_model_name_or_path="./ckpts/stable-diffusion-inpainting",
|
| 42 |
pretrained_model="./ckpts/virtual_tryon.pth",
|
| 43 |
+
dtype="float16",
|
| 44 |
)
|
| 45 |
self.vt_inference_hd = LeffaInference(model=vt_model_hd)
|
| 46 |
|
| 47 |
vt_model_dc = LeffaModel(
|
| 48 |
pretrained_model_name_or_path="./ckpts/stable-diffusion-inpainting",
|
| 49 |
pretrained_model="./ckpts/virtual_tryon_dc.pth",
|
| 50 |
+
dtype="float16",
|
| 51 |
)
|
| 52 |
self.vt_inference_dc = LeffaInference(model=vt_model_dc)
|
| 53 |
|
| 54 |
pt_model = LeffaModel(
|
| 55 |
pretrained_model_name_or_path="./ckpts/stable-diffusion-xl-1.0-inpainting-0.1",
|
| 56 |
pretrained_model="./ckpts/pose_transfer.pth",
|
| 57 |
+
dtype="float16",
|
| 58 |
)
|
| 59 |
self.pt_inference = LeffaInference(model=pt_model)
|
| 60 |
|
|
|
|
| 251 |
)
|
| 252 |
|
| 253 |
vt_step = gr.Number(
|
| 254 |
+
label="Inference Steps", minimum=30, maximum=100, step=1, value=30)
|
| 255 |
|
| 256 |
vt_scale = gr.Number(
|
| 257 |
label="Guidance Scale", minimum=0.1, maximum=5.0, step=0.1, value=2.5)
|
|
|
|
| 328 |
)
|
| 329 |
|
| 330 |
pt_step = gr.Number(
|
| 331 |
+
label="Inference Steps", minimum=30, maximum=100, step=1, value=30)
|
| 332 |
|
| 333 |
pt_scale = gr.Number(
|
| 334 |
label="Guidance Scale", minimum=0.1, maximum=5.0, step=0.1, value=2.5)
|
leffa/model.py
CHANGED
|
@@ -23,6 +23,7 @@ class LeffaModel(nn.Module):
|
|
| 23 |
new_in_channels: int = 12, # noisy_image: 4, mask: 1, masked_image: 4, densepose: 3
|
| 24 |
height: int = 1024,
|
| 25 |
width: int = 768,
|
|
|
|
| 26 |
):
|
| 27 |
super().__init__()
|
| 28 |
|
|
@@ -35,6 +36,9 @@ class LeffaModel(nn.Module):
|
|
| 35 |
new_in_channels,
|
| 36 |
)
|
| 37 |
|
|
|
|
|
|
|
|
|
|
| 38 |
def build_models(
|
| 39 |
self,
|
| 40 |
pretrained_model_name_or_path: str = "",
|
|
@@ -60,14 +64,16 @@ class LeffaModel(nn.Module):
|
|
| 60 |
return_unused_kwargs=True,
|
| 61 |
)
|
| 62 |
self.vae = AutoencoderKL.from_config(vae_config, **vae_kwargs)
|
| 63 |
-
self.vae_scale_factor = 2 ** (
|
|
|
|
| 64 |
# Reference UNet
|
| 65 |
unet_config, unet_kwargs = ReferenceUNet.load_config(
|
| 66 |
pretrained_model_name_or_path,
|
| 67 |
subfolder="unet",
|
| 68 |
return_unused_kwargs=True,
|
| 69 |
)
|
| 70 |
-
self.unet_encoder = ReferenceUNet.from_config(
|
|
|
|
| 71 |
self.unet_encoder.config.addition_embed_type = None
|
| 72 |
# Generative UNet
|
| 73 |
unet_config, unet_kwargs = GenerativeUNet.load_config(
|
|
@@ -80,7 +86,8 @@ class LeffaModel(nn.Module):
|
|
| 80 |
# Change Generative UNet conv_in and conv_out
|
| 81 |
unet_conv_in_channel_changed = self.unet.config.in_channels != new_in_channels
|
| 82 |
if unet_conv_in_channel_changed:
|
| 83 |
-
self.unet.conv_in = self.replace_conv_in_layer(
|
|
|
|
| 84 |
self.unet.config.in_channels = new_in_channels
|
| 85 |
unet_conv_out_channel_changed = (
|
| 86 |
self.unet.config.out_channels != self.vae.config.latent_channels
|
|
@@ -114,8 +121,10 @@ class LeffaModel(nn.Module):
|
|
| 114 |
|
| 115 |
# Load pretrained model
|
| 116 |
if pretrained_model != "" and pretrained_model is not None:
|
| 117 |
-
self.load_state_dict(torch.load(
|
| 118 |
-
|
|
|
|
|
|
|
| 119 |
|
| 120 |
def replace_conv_in_layer(self, unet_model, new_in_channels):
|
| 121 |
original_conv_in = unet_model.conv_in
|
|
@@ -168,7 +177,8 @@ class LeffaModel(nn.Module):
|
|
| 168 |
return new_conv_out
|
| 169 |
|
| 170 |
def vae_encode(self, pixel_values):
|
| 171 |
-
pixel_values = pixel_values.to(
|
|
|
|
| 172 |
with torch.no_grad():
|
| 173 |
latent = self.vae.encode(pixel_values).latent_dist.sample()
|
| 174 |
latent = latent * self.vae.config.scaling_factor
|
|
@@ -208,7 +218,8 @@ def remove_cross_attention(
|
|
| 208 |
hidden_size = unet.config.block_out_channels[-1]
|
| 209 |
elif name.startswith("up_blocks"):
|
| 210 |
block_id = int(name[len("up_blocks.")])
|
| 211 |
-
hidden_size = list(reversed(unet.config.block_out_channels))[
|
|
|
|
| 212 |
elif name.startswith("down_blocks"):
|
| 213 |
block_id = int(name[len("down_blocks.")])
|
| 214 |
hidden_size = unet.config.block_out_channels[block_id]
|
|
@@ -239,7 +250,6 @@ def remove_cross_attention(
|
|
| 239 |
return adapter_modules
|
| 240 |
|
| 241 |
|
| 242 |
-
|
| 243 |
class AttnProcessor2_0(torch.nn.Module):
|
| 244 |
r"""
|
| 245 |
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
|
|
@@ -315,10 +325,12 @@ class AttnProcessor2_0(torch.nn.Module):
|
|
| 315 |
inner_dim = key.shape[-1]
|
| 316 |
head_dim = inner_dim // attn.heads
|
| 317 |
|
| 318 |
-
query = query.view(batch_size, -1, attn.heads,
|
|
|
|
| 319 |
|
| 320 |
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 321 |
-
value = value.view(batch_size, -1, attn.heads,
|
|
|
|
| 322 |
|
| 323 |
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
| 324 |
# TODO: add support for attn.scale when we move to Torch 2.1
|
|
@@ -346,4 +358,4 @@ class AttnProcessor2_0(torch.nn.Module):
|
|
| 346 |
|
| 347 |
hidden_states = hidden_states / attn.rescale_output_factor
|
| 348 |
|
| 349 |
-
return hidden_states
|
|
|
|
| 23 |
new_in_channels: int = 12, # noisy_image: 4, mask: 1, masked_image: 4, densepose: 3
|
| 24 |
height: int = 1024,
|
| 25 |
width: int = 768,
|
| 26 |
+
dtype: str = "float16",
|
| 27 |
):
|
| 28 |
super().__init__()
|
| 29 |
|
|
|
|
| 36 |
new_in_channels,
|
| 37 |
)
|
| 38 |
|
| 39 |
+
if dtype == "float16":
|
| 40 |
+
self.half()
|
| 41 |
+
|
| 42 |
def build_models(
|
| 43 |
self,
|
| 44 |
pretrained_model_name_or_path: str = "",
|
|
|
|
| 64 |
return_unused_kwargs=True,
|
| 65 |
)
|
| 66 |
self.vae = AutoencoderKL.from_config(vae_config, **vae_kwargs)
|
| 67 |
+
self.vae_scale_factor = 2 ** (
|
| 68 |
+
len(self.vae.config.block_out_channels) - 1)
|
| 69 |
# Reference UNet
|
| 70 |
unet_config, unet_kwargs = ReferenceUNet.load_config(
|
| 71 |
pretrained_model_name_or_path,
|
| 72 |
subfolder="unet",
|
| 73 |
return_unused_kwargs=True,
|
| 74 |
)
|
| 75 |
+
self.unet_encoder = ReferenceUNet.from_config(
|
| 76 |
+
unet_config, **unet_kwargs)
|
| 77 |
self.unet_encoder.config.addition_embed_type = None
|
| 78 |
# Generative UNet
|
| 79 |
unet_config, unet_kwargs = GenerativeUNet.load_config(
|
|
|
|
| 86 |
# Change Generative UNet conv_in and conv_out
|
| 87 |
unet_conv_in_channel_changed = self.unet.config.in_channels != new_in_channels
|
| 88 |
if unet_conv_in_channel_changed:
|
| 89 |
+
self.unet.conv_in = self.replace_conv_in_layer(
|
| 90 |
+
self.unet, new_in_channels)
|
| 91 |
self.unet.config.in_channels = new_in_channels
|
| 92 |
unet_conv_out_channel_changed = (
|
| 93 |
self.unet.config.out_channels != self.vae.config.latent_channels
|
|
|
|
| 121 |
|
| 122 |
# Load pretrained model
|
| 123 |
if pretrained_model != "" and pretrained_model is not None:
|
| 124 |
+
self.load_state_dict(torch.load(
|
| 125 |
+
pretrained_model, map_location="cpu"))
|
| 126 |
+
logger.info(
|
| 127 |
+
"Load pretrained model from {}".format(pretrained_model))
|
| 128 |
|
| 129 |
def replace_conv_in_layer(self, unet_model, new_in_channels):
|
| 130 |
original_conv_in = unet_model.conv_in
|
|
|
|
| 177 |
return new_conv_out
|
| 178 |
|
| 179 |
def vae_encode(self, pixel_values):
|
| 180 |
+
pixel_values = pixel_values.to(
|
| 181 |
+
device=self.vae.device, dtype=self.vae.dtype)
|
| 182 |
with torch.no_grad():
|
| 183 |
latent = self.vae.encode(pixel_values).latent_dist.sample()
|
| 184 |
latent = latent * self.vae.config.scaling_factor
|
|
|
|
| 218 |
hidden_size = unet.config.block_out_channels[-1]
|
| 219 |
elif name.startswith("up_blocks"):
|
| 220 |
block_id = int(name[len("up_blocks.")])
|
| 221 |
+
hidden_size = list(reversed(unet.config.block_out_channels))[
|
| 222 |
+
block_id]
|
| 223 |
elif name.startswith("down_blocks"):
|
| 224 |
block_id = int(name[len("down_blocks.")])
|
| 225 |
hidden_size = unet.config.block_out_channels[block_id]
|
|
|
|
| 250 |
return adapter_modules
|
| 251 |
|
| 252 |
|
|
|
|
| 253 |
class AttnProcessor2_0(torch.nn.Module):
|
| 254 |
r"""
|
| 255 |
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
|
|
|
|
| 325 |
inner_dim = key.shape[-1]
|
| 326 |
head_dim = inner_dim // attn.heads
|
| 327 |
|
| 328 |
+
query = query.view(batch_size, -1, attn.heads,
|
| 329 |
+
head_dim).transpose(1, 2)
|
| 330 |
|
| 331 |
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 332 |
+
value = value.view(batch_size, -1, attn.heads,
|
| 333 |
+
head_dim).transpose(1, 2)
|
| 334 |
|
| 335 |
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
| 336 |
# TODO: add support for attn.scale when we move to Torch 2.1
|
|
|
|
| 358 |
|
| 359 |
hidden_states = hidden_states / attn.rescale_output_factor
|
| 360 |
|
| 361 |
+
return hidden_states
|
leffa/pipeline.py
CHANGED
|
@@ -106,7 +106,6 @@ class LeffaPipeline(object):
|
|
| 106 |
)
|
| 107 |
reference_features = list(reference_features)
|
| 108 |
|
| 109 |
-
|
| 110 |
with tqdm.tqdm(total=num_inference_steps) as progress_bar:
|
| 111 |
for i, t in enumerate(timesteps):
|
| 112 |
# expand the latent if we are doing classifier free guidance
|
|
|
|
| 106 |
)
|
| 107 |
reference_features = list(reference_features)
|
| 108 |
|
|
|
|
| 109 |
with tqdm.tqdm(total=num_inference_steps) as progress_bar:
|
| 110 |
for i, t in enumerate(timesteps):
|
| 111 |
# expand the latent if we are doing classifier free guidance
|