import gc import gradio as gr import numpy as np import torch import spaces import random import utils import logging from PIL import Image from diffusers.models import AutoencoderKL from diffusers import StableDiffusionXLImg2ImgPipeline from config import ( MODEL, MIN_IMAGE_SIZE, MAX_IMAGE_SIZE, DEFAULT_PROMPT, DEFAULT_NEGATIVE_PROMPT, scheduler_list, ) from transformers import AutoProcessor, AutoModelForImageClassification MAX_SEED = np.iinfo(np.int32).max # Enhanced logging configuration logging.basicConfig( level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', datefmt='%Y-%m-%d %H:%M:%S' ) logger = logging.getLogger(__name__) # PyTorch settings for better performance and determinism torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False torch.backends.cuda.matmul.allow_tf32 = True device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") logger.info(f"Using device: {device}") # Model initialization if torch.cuda.is_available(): try: logger.info("Loading VAE and pipeline...") vae = AutoencoderKL.from_pretrained( "madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16, ) pipe = utils.load_pipeline(MODEL, device, vae=vae) logger.info("Pipeline loaded successfully on GPU!") except Exception as e: logger.error(f"Error loading VAE, falling back to default: {e}") pipe = utils.load_pipeline(MODEL, device) else: logger.warning("CUDA not available, running on CPU") pipe = None # -------------------- NSFW 检测模型加载 -------------------- try: logger.info("Loading NSFW detector...") from transformers import AutoProcessor, AutoModelForImageClassification nsfw_processor = AutoProcessor.from_pretrained("Falconsai/nsfw_image_detection") nsfw_model = AutoModelForImageClassification.from_pretrained( "Falconsai/nsfw_image_detection" ).to(device) logger.info("NSFW detector loaded successfully.") except Exception as e: logger.error(f"Failed to load NSFW detector: {e}") nsfw_model = None nsfw_processor = None # ----------------------------------------------------------- class GenerationError(Exception): """Custom exception for generation errors""" pass def validate_prompt(prompt: str) -> str: """Validate and clean up the input prompt.""" if not isinstance(prompt, str): raise GenerationError("Prompt must be a string") try: # Ensure proper UTF-8 encoding/decoding prompt = prompt.encode('utf-8').decode('utf-8') # Add space between ! and , prompt = prompt.replace("!,", "! ,") except UnicodeError: raise GenerationError("Invalid characters in prompt") # Only check if the prompt is completely empty or only whitespace if not prompt or prompt.isspace(): raise GenerationError("Prompt cannot be empty") return prompt.strip() def validate_dimensions(width: int, height: int) -> None: """Validate image dimensions.""" if not MIN_IMAGE_SIZE <= width <= MAX_IMAGE_SIZE: raise GenerationError(f"Width must be between {MIN_IMAGE_SIZE} and {MAX_IMAGE_SIZE}") if not MIN_IMAGE_SIZE <= height <= MAX_IMAGE_SIZE: raise GenerationError(f"Height must be between {MIN_IMAGE_SIZE} and {MAX_IMAGE_SIZE}") def detect_nsfw(image: Image.Image, threshold: float = 0.5) -> bool: """Returns True if image is NSFW""" inputs = nsfw_processor(images=image, return_tensors="pt").to(device) with torch.no_grad(): outputs = nsfw_model(**inputs) probs = torch.nn.functional.softmax(outputs.logits, dim=-1) nsfw_score = probs[0][1].item() # label 1 = NSFW return nsfw_score > threshold progress=gr.Progress() @spaces.GPU def _generate_on_gpu( prompt: str, negative_prompt: str, width: int, height: int, scheduler: str, opt_strength:float, opt_scale:float, seed: int, randomize_seed: bool, guidance_scale: float, num_inference_steps: int ): progress(0,desc="Starting") if randomize_seed: seed = random.randint(0, MAX_SEED) """Generate images based on the given parameters.""" upscaler_pipe = None backup_scheduler = None def callback1(pipe, step, timestep, callback_kwargs): progress_value = 0.1 + ((step+1.0)/num_inference_steps)*(0.5/1.0) progress(progress_value, desc=f"Image generating, {step + 1}/{num_inference_steps} steps") return callback_kwargs optimizing_steps = int(num_inference_steps * opt_strength) def callback2(pipe, step, timestep, callback_kwargs): progress_value = 0.6 + ((step+1.0)/optimizing_steps)*(0.4/1.0) progress(progress_value, desc=f"Image optimizing, {step + 1}/{optimizing_steps} steps") return callback_kwargs try: # Memory management torch.cuda.empty_cache() gc.collect() # Input validation prompt = validate_prompt(prompt) if negative_prompt: negative_prompt = negative_prompt.encode('utf-8').decode('utf-8') validate_dimensions(width, height) # Set up generation generator = utils.seed_everything(seed) width, height = utils.preprocess_image_dimensions(width, height) # Set up pipeline backup_scheduler = pipe.scheduler pipe.scheduler = utils.get_scheduler(pipe.scheduler.config, scheduler) upscaler_pipe = StableDiffusionXLImg2ImgPipeline(**pipe.components) progress(0.1,desc="Image generating") latents = pipe( prompt=prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, generator=generator, output_type="latent", callback_on_step_end=callback1 ).images upscaled_latents = utils.upscale(latents, "nearest-exact", opt_scale) images = upscaler_pipe( prompt=prompt, negative_prompt=negative_prompt, image=upscaled_latents, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, strength=opt_strength, generator=generator, output_type="pil", callback_on_step_end=callback2 ).images out_img = images[0] # NSFW 检测 if nsfw_model and nsfw_processor: if detect_nsfw(out_img): msg = "Generated image contains NSFW content and cannot be displayed. Please modify your prompt and try again." raise Exception(msg) path = utils.save_image(out_img, "./outputs") logger.info(f"output path: {path}") progress(1, desc="Complete") info = { "status": "success" } return path, info except GenerationError as e: error_info = { "error": str(e), "status": "failed", } return None, error_info except Exception as e: error_info = { "error": str(e), "status": "failed", } return None, error_info finally: # Cleanup torch.cuda.empty_cache() gc.collect() if upscaler_pipe is not None: del upscaler_pipe if backup_scheduler is not None and pipe is not None: pipe.scheduler = backup_scheduler utils.free_memory() def generate( prompt: str, negative_prompt: str, width: int, height: int, scheduler: str, opt_strength: float, opt_scale: float, seed: int, randomize_seed: bool, guidance_scale: float, num_inference_steps: int, ): # 调用 GPU 函数 image_path, info = _generate_on_gpu( prompt, negative_prompt, width, height, scheduler, opt_strength, opt_scale, seed, randomize_seed, guidance_scale, num_inference_steps, ) # 如果出错,抛出异常 if info["status"] == "failed": raise gr.Error(info["error"]) # 返回图片路径 return image_path title = "# Anime AI Generator" description = "Our AI-Powered Anime Generator turns your ideas into breathtaking AI anime art—perfect for art, storytelling, or personal AI anime wallpaper. Experience more at [Anime AI Generator](https://www.animeaigen.com)." custom_css = """ """ with gr.Blocks(css=custom_css).queue() as demo: gr.Markdown(title) gr.Markdown(description) with gr.Row( elem_id="row-container" ): with gr.Column(): gr.Markdown("### Input") with gr.Column(): prompt = gr.Text( label="Prompt", max_lines=5, placeholder="Enter your prompt", value=DEFAULT_PROMPT, ) negative_prompt = gr.Text( label="Negative prompt", max_lines=5, placeholder="Enter a negative prompt", value=DEFAULT_NEGATIVE_PROMPT, ) with gr.Row(): width = gr.Slider( label="Width", minimum=MIN_IMAGE_SIZE, maximum=MAX_IMAGE_SIZE, step=8, value=832, ) height = gr.Slider( label="Height", minimum=MIN_IMAGE_SIZE, maximum=MAX_IMAGE_SIZE, step=8, value=1216, ) with gr.Row(): optimization_strength = gr.Slider( label="Optimization strength", minimum=0, maximum=1, step=0.05, value=0.55, ) optimization_scale = gr.Slider( label="Optimization scale ratio", minimum=1, maximum=1.5, step=0.1, value=1.5, ) with gr.Column(): scheduler = gr.Dropdown( label="scheduler", choices=scheduler_list, interactive=True, value="Euler a", ) with gr.Column(): seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): guidance_scale = gr.Slider( label="Guidance scale", minimum=1.0, maximum=12.0, step=0.1, value=6.0, ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=50, step=1, value=25, ) run_button = gr.Button("Run", variant="primary") with gr.Column(): gr.Markdown("### Output") result = gr.Image( type="filepath", label="Generated Image", elem_id="output-image" ) run_button.click( fn=generate, inputs=[ prompt, negative_prompt, width, height, scheduler, optimization_strength,optimization_scale, seed,randomize_seed, guidance_scale,num_inference_steps ], outputs=[result], ) if __name__ == "__main__": demo.launch()