Spaces:
Runtime error
Runtime error
Commit
·
44f9e84
0
Parent(s):
Duplicate from mosaicml/mpt-7b-instruct
Browse filesCo-authored-by: Sam <[email protected]>
- .gitattributes +34 -0
- README.md +13 -0
- app.py +246 -0
- quick_pipeline.py +85 -0
- requirements.txt +4 -0
.gitattributes
ADDED
|
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
| 6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
| 12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
| 13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
| 15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
| 16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
| 21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
| 22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
| 25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 28 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 29 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 30 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
| 31 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 32 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 33 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 34 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: MPT-7B-Instruct
|
| 3 |
+
emoji: 💁
|
| 4 |
+
colorFrom: yellow
|
| 5 |
+
colorTo: purple
|
| 6 |
+
sdk: gradio
|
| 7 |
+
sdk_version: 3.28.0
|
| 8 |
+
app_file: app.py
|
| 9 |
+
pinned: false
|
| 10 |
+
duplicated_from: mosaicml/mpt-7b-instruct
|
| 11 |
+
---
|
| 12 |
+
|
| 13 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
|
@@ -0,0 +1,246 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2023 MosaicML spaces authors
|
| 2 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 3 |
+
# and
|
| 4 |
+
# the https://huggingface.co/spaces/HuggingFaceH4/databricks-dolly authors
|
| 5 |
+
import datetime
|
| 6 |
+
import os
|
| 7 |
+
from threading import Event, Thread
|
| 8 |
+
from uuid import uuid4
|
| 9 |
+
|
| 10 |
+
import gradio as gr
|
| 11 |
+
import requests
|
| 12 |
+
import torch
|
| 13 |
+
from transformers import StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer
|
| 14 |
+
|
| 15 |
+
from quick_pipeline import InstructionTextGenerationPipeline as pipeline
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
# Configuration
|
| 19 |
+
HF_TOKEN = os.getenv("HF_TOKEN", None)
|
| 20 |
+
|
| 21 |
+
examples = [
|
| 22 |
+
# to do: add coupled hparams so e.g. poem has higher temp
|
| 23 |
+
"Write a travel blog about a 3-day trip to Thailand.",
|
| 24 |
+
"Write a short story about a robot that has a nice day.",
|
| 25 |
+
"Convert the following to a single line of JSON:\n\n```name: John\nage: 30\naddress:\n street:123 Main St.\n city: San Francisco\n state: CA\n zip: 94101\n```",
|
| 26 |
+
"Write a quick email to congratulate MosaicML about the launch of their inference offering.",
|
| 27 |
+
"Explain how a candle works to a 6 year old in a few sentences.",
|
| 28 |
+
"What are some of the most common misconceptions about birds?",
|
| 29 |
+
]
|
| 30 |
+
|
| 31 |
+
# Initialize the model and tokenizer
|
| 32 |
+
generate = pipeline(
|
| 33 |
+
"mosaicml/mpt-7b-instruct",
|
| 34 |
+
torch_dtype=torch.bfloat16,
|
| 35 |
+
trust_remote_code=True,
|
| 36 |
+
use_auth_token=HF_TOKEN,
|
| 37 |
+
)
|
| 38 |
+
stop_token_ids = generate.tokenizer.convert_tokens_to_ids(["<|endoftext|>"])
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
# Define a custom stopping criteria
|
| 42 |
+
class StopOnTokens(StoppingCriteria):
|
| 43 |
+
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
| 44 |
+
for stop_id in stop_token_ids:
|
| 45 |
+
if input_ids[0][-1] == stop_id:
|
| 46 |
+
return True
|
| 47 |
+
return False
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
def log_conversation(session_id, instruction, response, generate_kwargs):
|
| 51 |
+
logging_url = os.getenv("LOGGING_URL", None)
|
| 52 |
+
if logging_url is None:
|
| 53 |
+
return
|
| 54 |
+
|
| 55 |
+
timestamp = datetime.datetime.now().strftime("%Y-%m-%dT%H:%M:%S")
|
| 56 |
+
|
| 57 |
+
data = {
|
| 58 |
+
"session_id": session_id,
|
| 59 |
+
"timestamp": timestamp,
|
| 60 |
+
"instruction": instruction,
|
| 61 |
+
"response": response,
|
| 62 |
+
"generate_kwargs": generate_kwargs,
|
| 63 |
+
}
|
| 64 |
+
|
| 65 |
+
try:
|
| 66 |
+
requests.post(logging_url, json=data)
|
| 67 |
+
except requests.exceptions.RequestException as e:
|
| 68 |
+
print(f"Error logging conversation: {e}")
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
def process_stream(instruction, temperature, top_p, top_k, max_new_tokens, session_id):
|
| 72 |
+
# Tokenize the input
|
| 73 |
+
input_ids = generate.tokenizer(
|
| 74 |
+
generate.format_instruction(instruction), return_tensors="pt"
|
| 75 |
+
).input_ids
|
| 76 |
+
input_ids = input_ids.to(generate.model.device)
|
| 77 |
+
|
| 78 |
+
# Initialize the streamer and stopping criteria
|
| 79 |
+
streamer = TextIteratorStreamer(
|
| 80 |
+
generate.tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True
|
| 81 |
+
)
|
| 82 |
+
stop = StopOnTokens()
|
| 83 |
+
|
| 84 |
+
if temperature < 0.1:
|
| 85 |
+
temperature = 0.0
|
| 86 |
+
do_sample = False
|
| 87 |
+
else:
|
| 88 |
+
do_sample = True
|
| 89 |
+
|
| 90 |
+
gkw = {
|
| 91 |
+
**generate.generate_kwargs,
|
| 92 |
+
**{
|
| 93 |
+
"input_ids": input_ids,
|
| 94 |
+
"max_new_tokens": max_new_tokens,
|
| 95 |
+
"temperature": temperature,
|
| 96 |
+
"do_sample": do_sample,
|
| 97 |
+
"top_p": top_p,
|
| 98 |
+
"top_k": top_k,
|
| 99 |
+
"streamer": streamer,
|
| 100 |
+
"stopping_criteria": StoppingCriteriaList([stop]),
|
| 101 |
+
},
|
| 102 |
+
}
|
| 103 |
+
|
| 104 |
+
response = ""
|
| 105 |
+
stream_complete = Event()
|
| 106 |
+
|
| 107 |
+
def generate_and_signal_complete():
|
| 108 |
+
generate.model.generate(**gkw)
|
| 109 |
+
stream_complete.set()
|
| 110 |
+
|
| 111 |
+
def log_after_stream_complete():
|
| 112 |
+
stream_complete.wait()
|
| 113 |
+
log_conversation(
|
| 114 |
+
session_id,
|
| 115 |
+
instruction,
|
| 116 |
+
response,
|
| 117 |
+
{
|
| 118 |
+
"top_k": top_k,
|
| 119 |
+
"top_p": top_p,
|
| 120 |
+
"temperature": temperature,
|
| 121 |
+
},
|
| 122 |
+
)
|
| 123 |
+
|
| 124 |
+
t1 = Thread(target=generate_and_signal_complete)
|
| 125 |
+
t1.start()
|
| 126 |
+
|
| 127 |
+
t2 = Thread(target=log_after_stream_complete)
|
| 128 |
+
t2.start()
|
| 129 |
+
|
| 130 |
+
for new_text in streamer:
|
| 131 |
+
response += new_text
|
| 132 |
+
yield response
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
with gr.Blocks(
|
| 136 |
+
theme=gr.themes.Soft(),
|
| 137 |
+
css=".disclaimer {font-variant-caps: all-small-caps;}",
|
| 138 |
+
) as demo:
|
| 139 |
+
session_id = gr.State(lambda: str(uuid4()))
|
| 140 |
+
gr.Markdown(
|
| 141 |
+
"""<h1><center>MosaicML MPT-7B-Instruct</center></h1>
|
| 142 |
+
|
| 143 |
+
This demo is of [MPT-7B-Instruct](https://huggingface.co/mosaicml/mpt-7b-instruct). It is based on [MPT-7B](https://huggingface.co/mosaicml/mpt-7b) fine-tuned with approximately [60,000 instruction demonstrations](https://huggingface.co/datasets/sam-mosaic/dolly_hhrlhf)
|
| 144 |
+
|
| 145 |
+
If you're interested in [training](https://www.mosaicml.com/training) and [deploying](https://www.mosaicml.com/inference) your own MPT or LLMs, [sign up](https://forms.mosaicml.com/demo?utm_source=huggingface&utm_medium=referral&utm_campaign=mpt-7b) for MosaicML platform.
|
| 146 |
+
|
| 147 |
+
This is running on a smaller, shared GPU, so it may take a few seconds to respond. If you want to run it on your own GPU, you can [download the model from HuggingFace](https://huggingface.co/mosaicml/mpt-7b-instruct) and run it locally. Or [Duplicate the Space](https://huggingface.co/spaces/mosaicml/mpt-7b-instruct?duplicate=true) to skip the queue and run in a private space."""
|
| 148 |
+
)
|
| 149 |
+
with gr.Row():
|
| 150 |
+
with gr.Column():
|
| 151 |
+
with gr.Row():
|
| 152 |
+
instruction = gr.Textbox(
|
| 153 |
+
placeholder="Enter your question here",
|
| 154 |
+
label="Question/Instruction",
|
| 155 |
+
elem_id="q-input",
|
| 156 |
+
)
|
| 157 |
+
with gr.Accordion("Advanced Options:", open=False):
|
| 158 |
+
with gr.Row():
|
| 159 |
+
with gr.Column():
|
| 160 |
+
with gr.Row():
|
| 161 |
+
temperature = gr.Slider(
|
| 162 |
+
label="Temperature",
|
| 163 |
+
value=0.1,
|
| 164 |
+
minimum=0.0,
|
| 165 |
+
maximum=1.0,
|
| 166 |
+
step=0.1,
|
| 167 |
+
interactive=True,
|
| 168 |
+
info="Higher values produce more diverse outputs",
|
| 169 |
+
)
|
| 170 |
+
with gr.Column():
|
| 171 |
+
with gr.Row():
|
| 172 |
+
top_p = gr.Slider(
|
| 173 |
+
label="Top-p (nucleus sampling)",
|
| 174 |
+
value=1.0,
|
| 175 |
+
minimum=0.0,
|
| 176 |
+
maximum=1,
|
| 177 |
+
step=0.01,
|
| 178 |
+
interactive=True,
|
| 179 |
+
info=(
|
| 180 |
+
"Sample from the smallest possible set of tokens whose cumulative probability "
|
| 181 |
+
"exceeds top_p. Set to 1 to disable and sample from all tokens."
|
| 182 |
+
),
|
| 183 |
+
)
|
| 184 |
+
with gr.Column():
|
| 185 |
+
with gr.Row():
|
| 186 |
+
top_k = gr.Slider(
|
| 187 |
+
label="Top-k",
|
| 188 |
+
value=0,
|
| 189 |
+
minimum=0.0,
|
| 190 |
+
maximum=200,
|
| 191 |
+
step=1,
|
| 192 |
+
interactive=True,
|
| 193 |
+
info="Sample from a shortlist of top-k tokens — 0 to disable and sample from all tokens.",
|
| 194 |
+
)
|
| 195 |
+
with gr.Column():
|
| 196 |
+
with gr.Row():
|
| 197 |
+
max_new_tokens = gr.Slider(
|
| 198 |
+
label="Maximum new tokens",
|
| 199 |
+
value=256,
|
| 200 |
+
minimum=0,
|
| 201 |
+
maximum=1664,
|
| 202 |
+
step=5,
|
| 203 |
+
interactive=True,
|
| 204 |
+
info="The maximum number of new tokens to generate",
|
| 205 |
+
)
|
| 206 |
+
with gr.Row():
|
| 207 |
+
submit = gr.Button("Submit")
|
| 208 |
+
with gr.Row():
|
| 209 |
+
with gr.Box():
|
| 210 |
+
gr.Markdown("**MPT-7B-Instruct**")
|
| 211 |
+
output_7b = gr.Markdown()
|
| 212 |
+
|
| 213 |
+
with gr.Row():
|
| 214 |
+
gr.Examples(
|
| 215 |
+
examples=examples,
|
| 216 |
+
inputs=[instruction],
|
| 217 |
+
cache_examples=False,
|
| 218 |
+
fn=process_stream,
|
| 219 |
+
outputs=output_7b,
|
| 220 |
+
)
|
| 221 |
+
with gr.Row():
|
| 222 |
+
gr.Markdown(
|
| 223 |
+
"Disclaimer: MPT-7B can produce factually incorrect output, and should not be relied on to produce "
|
| 224 |
+
"factually accurate information. MPT-7B was trained on various public datasets; while great efforts "
|
| 225 |
+
"have been taken to clean the pretraining data, it is possible that this model could generate lewd, "
|
| 226 |
+
"biased, or otherwise offensive outputs.",
|
| 227 |
+
elem_classes=["disclaimer"],
|
| 228 |
+
)
|
| 229 |
+
with gr.Row():
|
| 230 |
+
gr.Markdown(
|
| 231 |
+
"[Privacy policy](https://gist.github.com/samhavens/c29c68cdcd420a9aa0202d0839876dac)",
|
| 232 |
+
elem_classes=["disclaimer"],
|
| 233 |
+
)
|
| 234 |
+
|
| 235 |
+
submit.click(
|
| 236 |
+
process_stream,
|
| 237 |
+
inputs=[instruction, temperature, top_p, top_k, max_new_tokens, session_id],
|
| 238 |
+
outputs=output_7b,
|
| 239 |
+
)
|
| 240 |
+
instruction.submit(
|
| 241 |
+
process_stream,
|
| 242 |
+
inputs=[instruction, temperature, top_p, top_k, max_new_tokens, session_id],
|
| 243 |
+
outputs=output_7b,
|
| 244 |
+
)
|
| 245 |
+
|
| 246 |
+
demo.queue(max_size=32, concurrency_count=4).launch(debug=True)
|
quick_pipeline.py
ADDED
|
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Any, Dict, Tuple
|
| 2 |
+
import warnings
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
INSTRUCTION_KEY = "### Instruction:"
|
| 9 |
+
RESPONSE_KEY = "### Response:"
|
| 10 |
+
END_KEY = "### End"
|
| 11 |
+
INTRO_BLURB = "Below is an instruction that describes a task. Write a response that appropriately completes the request."
|
| 12 |
+
PROMPT_FOR_GENERATION_FORMAT = """{intro}
|
| 13 |
+
|
| 14 |
+
{instruction_key}
|
| 15 |
+
{instruction}
|
| 16 |
+
|
| 17 |
+
{response_key}
|
| 18 |
+
""".format(
|
| 19 |
+
intro=INTRO_BLURB,
|
| 20 |
+
instruction_key=INSTRUCTION_KEY,
|
| 21 |
+
instruction="{instruction}",
|
| 22 |
+
response_key=RESPONSE_KEY,
|
| 23 |
+
)
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
class InstructionTextGenerationPipeline:
|
| 27 |
+
def __init__(
|
| 28 |
+
self,
|
| 29 |
+
model_name,
|
| 30 |
+
torch_dtype=torch.bfloat16,
|
| 31 |
+
trust_remote_code=True,
|
| 32 |
+
use_auth_token=None,
|
| 33 |
+
) -> None:
|
| 34 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
| 35 |
+
model_name,
|
| 36 |
+
torch_dtype=torch_dtype,
|
| 37 |
+
trust_remote_code=trust_remote_code,
|
| 38 |
+
use_auth_token=use_auth_token,
|
| 39 |
+
)
|
| 40 |
+
|
| 41 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
| 42 |
+
model_name,
|
| 43 |
+
trust_remote_code=trust_remote_code,
|
| 44 |
+
use_auth_token=use_auth_token,
|
| 45 |
+
)
|
| 46 |
+
if tokenizer.pad_token_id is None:
|
| 47 |
+
warnings.warn(
|
| 48 |
+
"pad_token_id is not set for the tokenizer. Using eos_token_id as pad_token_id."
|
| 49 |
+
)
|
| 50 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 51 |
+
tokenizer.padding_side = "left"
|
| 52 |
+
self.tokenizer = tokenizer
|
| 53 |
+
|
| 54 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 55 |
+
self.model.eval()
|
| 56 |
+
self.model.to(device=device, dtype=torch_dtype)
|
| 57 |
+
|
| 58 |
+
self.generate_kwargs = {
|
| 59 |
+
"temperature": 0.5,
|
| 60 |
+
"top_p": 0.92,
|
| 61 |
+
"top_k": 0,
|
| 62 |
+
"max_new_tokens": 512,
|
| 63 |
+
"use_cache": True,
|
| 64 |
+
"do_sample": True,
|
| 65 |
+
"eos_token_id": self.tokenizer.eos_token_id,
|
| 66 |
+
"pad_token_id": self.tokenizer.pad_token_id,
|
| 67 |
+
"repetition_penalty": 1.1, # 1.0 means no penalty, > 1.0 means penalty, 1.2 from CTRL paper
|
| 68 |
+
}
|
| 69 |
+
|
| 70 |
+
def format_instruction(self, instruction):
|
| 71 |
+
return PROMPT_FOR_GENERATION_FORMAT.format(instruction=instruction)
|
| 72 |
+
|
| 73 |
+
def __call__(
|
| 74 |
+
self, instruction: str, **generate_kwargs: Dict[str, Any]
|
| 75 |
+
) -> Tuple[str, str, float]:
|
| 76 |
+
s = PROMPT_FOR_GENERATION_FORMAT.format(instruction=instruction)
|
| 77 |
+
input_ids = self.tokenizer(s, return_tensors="pt").input_ids
|
| 78 |
+
input_ids = input_ids.to(self.model.device)
|
| 79 |
+
gkw = {**self.generate_kwargs, **generate_kwargs}
|
| 80 |
+
with torch.no_grad():
|
| 81 |
+
output_ids = self.model.generate(input_ids, **gkw)
|
| 82 |
+
# Slice the output_ids tensor to get only new tokens
|
| 83 |
+
new_tokens = output_ids[0, len(input_ids[0]) :]
|
| 84 |
+
output_text = self.tokenizer.decode(new_tokens, skip_special_tokens=True)
|
| 85 |
+
return output_text
|
requirements.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
-e git+https://github.com/samhavens/just-triton-flash.git#egg=flash_attn
|
| 2 |
+
einops
|
| 3 |
+
torch
|
| 4 |
+
transformers
|