# 🤖✨ CPU Image Generator (Stable Diffusion) import torch from diffusers import StableDiffusionPipeline import gradio as gr # Load model once at startup (≈3.4 GB; fits HF Space free tier CPU) PIPELINE_ID = "runwayml/stable-diffusion-v1-5" pipe = StableDiffusionPipeline.from_pretrained( PIPELINE_ID, torch_dtype=torch.float32, safety_checker=None, # skip NSFW checker ) pipe = pipe.to("cpu") def generate_image(prompt: str, steps: int): if not prompt: return None image = pipe(prompt, num_inference_steps=steps).images[0] return image with gr.Blocks(title="🤖✨ AI Image Generator (CPU)") as demo: gr.Markdown( "# 🤖✨ AI Image Generator\n" "Enter a creative prompt, adjust inference steps, and generate a unique image—**100% CPU**." ) with gr.Row(): prompt_in = gr.Textbox( label="Prompt", placeholder="e.g. A photorealistic portrait of a cyberpunk fox" ) steps_in = gr.Slider( minimum=1, maximum=50, value=25, step=1, label="Inference Steps" ) run_btn = gr.Button("Generate 🖼️", variant="primary") img_out = gr.Image(label="Generated Image") run_btn.click(generate_image, [prompt_in, steps_in], img_out) if __name__ == "__main__": demo.launch(server_name="0.0.0.0")