Fashion-Fit360 / app.py
seawolf2357's picture
Update app.py
92d4811 verified
raw
history blame
8.42 kB
import gradio as gr
import spaces
import torch
import diffusers
import transformers
import copy
import random
import numpy as np
import torchvision.transforms as T
import math
import os
import peft
from peft import LoraConfig
from safetensors import safe_open
from omegaconf import OmegaConf
from omnitry.models.transformer_flux import FluxTransformer2DModel
from omnitry.pipelines.pipeline_flux_fill import FluxFillPipeline
from huggingface_hub import snapshot_download
snapshot_download(repo_id="Kunbyte/OmniTry", local_dir="./OmniTry")
device = torch.device('cuda:0')
weight_dtype = torch.bfloat16
args = OmegaConf.load('configs/omnitry_v1_unified.yaml')
# init model
transformer = FluxTransformer2DModel.from_pretrained(
'black-forest-labs/FLUX.1-Fill-dev',
subfolder='transformer'
).requires_grad_(False).to(device, dtype=weight_dtype)
pipeline = FluxFillPipeline.from_pretrained(
'black-forest-labs/FLUX.1-Fill-dev',
transformer=transformer,
torch_dtype=weight_dtype
).to(device)
# insert LoRA
lora_config = LoraConfig(
r=args.lora_rank,
lora_alpha=args.lora_alpha,
init_lora_weights="gaussian",
target_modules=[
'x_embedder',
'attn.to_k', 'attn.to_q', 'attn.to_v', 'attn.to_out.0',
'attn.add_k_proj', 'attn.add_q_proj', 'attn.add_v_proj', 'attn.to_add_out',
'ff.net.0.proj', 'ff.net.2', 'ff_context.net.0.proj', 'ff_context.net.2',
'norm1_context.linear', 'norm1.linear', 'norm.linear', 'proj_mlp', 'proj_out'
]
)
transformer.add_adapter(lora_config, adapter_name='vtryon_lora')
transformer.add_adapter(lora_config, adapter_name='garment_lora')
with safe_open('OmniTry/omnitry_v1_unified.safetensors', framework="pt") as f:
lora_weights = {k: f.get_tensor(k) for k in f.keys()}
transformer.load_state_dict(lora_weights, strict=False)
# hack lora forward
def create_hacked_forward(module):
def lora_forward(self, active_adapter, x, *args, **kwargs):
result = self.base_layer(x, *args, **kwargs)
if active_adapter is not None:
lora_A = self.lora_A[active_adapter]
lora_B = self.lora_B[active_adapter]
dropout = self.lora_dropout[active_adapter]
scaling = self.scaling[active_adapter]
x = x.to(lora_A.weight.dtype)
result = result + lora_B(lora_A(dropout(x))) * scaling
return result
def hacked_lora_forward(self, x, *args, **kwargs):
return torch.cat((
lora_forward(self, 'vtryon_lora', x[:1], *args, **kwargs),
lora_forward(self, 'garment_lora', x[1:], *args, **kwargs),
), dim=0)
return hacked_lora_forward.__get__(module, type(module))
for n, m in transformer.named_modules():
if isinstance(m, peft.tuners.lora.layer.Linear):
m.forward = create_hacked_forward(m)
def seed_everything(seed=0):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
@spaces.GPU
def generate(person_image, object_image, object_class, steps, guidance_scale, seed):
if seed == -1:
seed = random.randint(0, 2**32 - 1)
seed_everything(seed)
max_area = 1024 * 1024
oW, oH = person_image.width, person_image.height
ratio = math.sqrt(max_area / (oW * oH))
ratio = min(1, ratio)
tW, tH = int(oW * ratio) // 16 * 16, int(oH * ratio) // 16 * 16
transform = T.Compose([
T.Resize((tH, tW)),
T.ToTensor(),
])
person_image = transform(person_image)
ratio = min(tW / object_image.width, tH / object_image.height)
transform = T.Compose([
T.Resize((int(object_image.height * ratio), int(object_image.width * ratio))),
T.ToTensor(),
])
object_image_padded = torch.ones_like(person_image)
object_image = transform(object_image)
new_h, new_w = object_image.shape[1], object_image.shape[2]
min_x = (tW - new_w) // 2
min_y = (tH - new_h) // 2
object_image_padded[:, min_y: min_y + new_h, min_x: min_x + new_w] = object_image
prompts = [args.object_map[object_class]] * 2
img_cond = torch.stack([person_image, object_image_padded]).to(dtype=weight_dtype, device=device)
mask = torch.zeros_like(img_cond).to(img_cond)
with torch.no_grad():
img = pipeline(
prompt=prompts,
height=tH,
width=tW,
img_cond=img_cond,
mask=mask,
guidance_scale=guidance_scale,
num_inference_steps=steps,
generator=torch.Generator(device).manual_seed(seed),
).images[0]
return img
# Custom CSS
custom_css = """
/* ์ „์ฒด ๋ฐฐ๊ฒฝ */
.gradio-container {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
font-family: 'Inter', sans-serif;
}
/* === ํ”Œ๋ ˆ์ด์Šคํ™€๋” ์ „๋ถ€ ์ œ๊ฑฐ === */
.gr-image svg,
.gr-image [data-testid*="placeholder"],
.gr-image [class*="placeholder"],
.gr-image [aria-label*="placeholder"],
.gr-image [class*="svelte"][class*="placeholder"],
.gr-image .absolute.inset-0.flex.items-center.justify-center,
.gr-image .flex.items-center.justify-center svg {
display: none !important;
visibility: hidden !important;
}
.gr-image [class*="overlay"],
.gr-image .fixed.inset-0,
.gr-image .absolute.inset-0 {
pointer-events: none !important;
}
/* ์ด๋ฏธ์ง€ ์—…๋กœ๋“œ ์˜์—ญ */
.gr-image .wrap { background: transparent !important; min-height: 400px !important; }
.gr-image .upload-container {
min-height: 400px !important;
border: 3px dashed rgba(102, 126, 234, 0.4) !important;
border-radius: 12px !important;
background: linear-gradient(135deg, rgba(248, 250, 252, 0.5) 0%, rgba(241, 245, 249, 0.5) 100%) !important;
position: relative !important;
}
/* ์ด๋ฏธ์ง€ ์žˆ์„ ๋•Œ */
.gr-image:has(img) .upload-container { border: none !important; background: transparent !important; }
/* ์•ˆ๋‚ด ํ…์ŠคํŠธ */
.gr-image .upload-container::after {
content: "Click or Drag to Upload";
position: absolute; top: 50%; left: 50%;
transform: translate(-50%, -50%);
color: rgba(102, 126, 234, 0.7);
font-size: 1.05em; font-weight: 500;
pointer-events: none;
}
.gr-image:has(img) .upload-container::after { display: none !important; }
/* ์—…๋กœ๋“œ ์ด๋ฏธ์ง€ */
.gr-image img { border-radius: 12px !important; position: relative !important; z-index: 10 !important; }
/* ๋ฒ„ํŠผ, ๋ผ๋ฒจ ๋“ฑ ๋‚˜๋จธ์ง€๋Š” ๊ทธ๋Œ€๋กœ */
.gr-button-primary {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
color: white !important; border: none !important;
padding: 15px 40px !important; font-size: 1.2em !important;
border-radius: 50px !important; cursor: pointer !important;
}
"""
if __name__ == '__main__':
with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as demo:
with gr.Column(elem_id="header"):
gr.HTML("""
<h1>โœจ CodiFit-AI Virtual Try-On โœจ</h1>
<p id="subtitle">Experience the future of fashion with AI-powered virtual clothing try-on</p>
""")
with gr.Row(equal_height=True):
with gr.Column(scale=1):
person_image = gr.Image(type="pil", label="Upload Person Photo", height=500, interactive=True)
with gr.Column(scale=1):
object_image = gr.Image(type="pil", label="Upload Object Image", height=400, interactive=True)
object_class = gr.Dropdown(label='Select Object Category', choices=args.object_map.keys())
run_button = gr.Button(value="๐Ÿš€ Generate Try-On", variant='primary')
with gr.Column(scale=1):
image_out = gr.Image(type="pil", label="Virtual Try-On Result", height=500, interactive=False)
with gr.Accordion("โš™๏ธ Advanced Settings", open=False):
with gr.Row():
guidance_scale = gr.Slider(label="๐ŸŽฏ Guidance Scale", minimum=1, maximum=50, value=30, step=0.1)
steps = gr.Slider(label="๐Ÿ”„ Inference Steps", minimum=1, maximum=50, value=20, step=1)
seed = gr.Number(label="๐ŸŽฒ Random Seed", value=-1, precision=0)
run_button.click(generate,
inputs=[person_image, object_image, object_class, steps, guidance_scale, seed],
outputs=[image_out])
demo.launch(server_name="0.0.0.0")