Spaces:
Running
Running
File size: 5,337 Bytes
a52ee17 ffb43be a52ee17 b18cfe3 a52ee17 ffb43be a52ee17 d93af2a ffb43be d93af2a ffb43be d93af2a ffb43be d93af2a ffb43be d93af2a ffb43be d93af2a ffb43be d93af2a ffb43be d93af2a ffb43be d93af2a ffb43be d93af2a ffb43be d93af2a ffb43be d93af2a ffb43be d93af2a ffb43be d93af2a ffb43be d93af2a ffb43be d93af2a ffb43be d93af2a ffb43be d93af2a ffb43be d93af2a ffb43be d93af2a ffb43be d93af2a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
---
title: MedGemma Symptom Analyzer
emoji: π₯
colorFrom: blue
colorTo: green
sdk: gradio
sdk_version: 5.35.0
app_file: app.py
pinned: false
license: apache-2.0
---
# MedGemma Symptom Analyzer
A modern medical AI application using Google's MedGemma model via HuggingFace Inference API for symptom analysis and medical consultation.
## π₯ Features
- **AI-Powered Symptom Analysis**: Uses Google's MedGemma-4B model for medical insights
- **Comprehensive Medical Reports**: Provides differential diagnoses, next steps, and red flags
- **Interactive Web Interface**: Built with Gradio for easy use
- **Demo Mode**: Fallback functionality when API is unavailable
- **Medical Safety**: Includes appropriate disclaimers and safety guidance
## π Quick Start
### 1. Installation
```bash
# Clone the repository
git clone <your-repo-url>
cd medgemma-symptomps
# Install dependencies
pip install -r requirements.txt
```
### 2. HuggingFace Access Setup
The app uses Google's MedGemma model, which requires special access:
1. **Get HuggingFace Token**:
- Visit [HuggingFace Settings](https://huggingface.co/settings/tokens)
- Create a new token with `read` permissions
2. **Request MedGemma Access**:
- Visit [google/medgemma-4b-it](https://huggingface.co/google/medgemma-4b-it)
- Click "Request access to this model"
- Wait for approval from Google (may take some time)
3. **Set Environment Variable**:
```bash
export HF_TOKEN="your_huggingface_token_here"
```
### 3. Run the Application
```bash
python3 app.py
```
The app will start on `http://localhost:7860` (or next available port).
## π§ Configuration
### Environment Variables
- `HF_TOKEN`: Your HuggingFace API token (required for model access)
- `FORCE_CPU`: Set to `true` to force CPU usage (not needed for API version)
### Model Access Status
The app handles different access scenarios:
- β
**Full Access**: MedGemma model available via API
- β οΈ **Pending Access**: Waiting for model approval (uses demo mode)
- β **No Access**: Falls back to demo responses
## π§ͺ Testing
Test the API connection:
```bash
python3 test_api.py
```
This will verify:
- HuggingFace API connectivity
- Token validity
- Model access permissions
## π Usage
### Web Interface
1. Open the app in your browser
2. Enter patient symptoms in the text area
3. Adjust creativity slider if desired
4. Click "Analyze Symptoms"
5. Review the comprehensive medical analysis
### Example Symptoms
Try these example symptom descriptions:
- **Flu-like**: "Fever, headache, body aches, and fatigue for 3 days"
- **Chest pain**: "Sharp chest pain worsening with breathing, shortness of breath"
- **Digestive**: "Abdominal pain, nausea, and diarrhea after eating"
## π Medical Disclaimer
**β οΈ IMPORTANT**: This tool is for educational purposes only. It should never replace professional medical advice, diagnosis, or treatment. Always consult qualified healthcare professionals for medical concerns.
## ποΈ Architecture
### API-Based Design
The app now uses HuggingFace Inference API instead of local model loading:
- **Advantages**:
- No local GPU/CPU requirements
- Faster startup time
- Always up-to-date model
- Reduced memory usage
- **Requirements**:
- Internet connection
- Valid HuggingFace token
- Model access approval
### File Structure
```
medgemma-symptomps/
βββ app.py # Main Gradio application
βββ test_api.py # API connection test script
βββ requirements.txt # Python dependencies
βββ README.md # This file
βββ medgemma_app.log # Application logs
```
## π οΈ Development
### Key Components
1. **MedGemmaSymptomAnalyzer**: Main class handling API connections
2. **Gradio Interface**: Web UI with symptom input and analysis display
3. **Demo Responses**: Fallback functionality for offline use
### API Integration
```python
from huggingface_hub import InferenceClient
client = InferenceClient(token=hf_token)
response = client.text_generation(
prompt=medical_prompt,
model="google/medgemma-4b-it",
max_new_tokens=400,
temperature=0.7
)
```
## π Troubleshooting
### Common Issues
1. **404 Model Not Found**:
- Ensure you have requested access to MedGemma
- Wait for Google's approval
- Verify your HuggingFace token is valid
2. **Demo Mode Only**:
- Check your internet connection
- Verify HF_TOKEN environment variable
- Confirm model access approval status
3. **Slow Responses**:
- API responses may take 10-30 seconds
- Consider adjusting max_tokens parameter
### Getting Help
- Check the application logs: `tail -f medgemma_app.log`
- Test API connection: `python3 test_api.py`
- Verify model access: Visit the HuggingFace model page
## π Resources
- [MedGemma Model Card](https://huggingface.co/google/medgemma-4b-it)
- [HuggingFace Inference API](https://huggingface.co/docs/api-inference/index)
- [Gradio Documentation](https://gradio.app/docs/)
## π License
This project uses the MedGemma model which has its own licensing terms. Please review the [model license](https://huggingface.co/google/medgemma-4b-it) before use.
---
**Remember**: Always prioritize patient safety and consult healthcare professionals for medical decisions. |