Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Commit
·
fb8f7c5
1
Parent(s):
63c78f0
Upload app.py with huggingface_hub
Browse files
app.py
ADDED
|
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# This is a small and fast sklearn model, so the run-gradio script trains a model and deploys it
|
| 2 |
+
|
| 3 |
+
import pandas as pd
|
| 4 |
+
import numpy as np
|
| 5 |
+
import sklearn
|
| 6 |
+
import gradio as gr
|
| 7 |
+
from sklearn import preprocessing
|
| 8 |
+
from sklearn.model_selection import train_test_split
|
| 9 |
+
from sklearn.ensemble import RandomForestClassifier
|
| 10 |
+
from sklearn.metrics import accuracy_score
|
| 11 |
+
|
| 12 |
+
data = pd.read_csv('https://raw.githubusercontent.com/gradio-app/titanic/master/train.csv')
|
| 13 |
+
data.head()
|
| 14 |
+
|
| 15 |
+
def encode_ages(df): # Binning ages
|
| 16 |
+
df.Age = df.Age.fillna(-0.5)
|
| 17 |
+
bins = (-1, 0, 5, 12, 18, 25, 35, 60, 120)
|
| 18 |
+
categories = pd.cut(df.Age, bins, labels=False)
|
| 19 |
+
df.Age = categories
|
| 20 |
+
return df
|
| 21 |
+
|
| 22 |
+
def encode_fares(df): # Binning fares
|
| 23 |
+
df.Fare = df.Fare.fillna(-0.5)
|
| 24 |
+
bins = (-1, 0, 8, 15, 31, 1000)
|
| 25 |
+
categories = pd.cut(df.Fare, bins, labels=False)
|
| 26 |
+
df.Fare = categories
|
| 27 |
+
return df
|
| 28 |
+
|
| 29 |
+
def encode_sex(df):
|
| 30 |
+
mapping = {"male": 0, "female": 1}
|
| 31 |
+
return df.replace({'Sex': mapping})
|
| 32 |
+
|
| 33 |
+
def transform_features(df):
|
| 34 |
+
df = encode_ages(df)
|
| 35 |
+
df = encode_fares(df)
|
| 36 |
+
df = encode_sex(df)
|
| 37 |
+
return df
|
| 38 |
+
|
| 39 |
+
train = data[['PassengerId', 'Fare', 'Age', 'Sex', 'Survived']]
|
| 40 |
+
train = transform_features(train)
|
| 41 |
+
train.head()
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
X_all = train.drop(['Survived', 'PassengerId'], axis=1)
|
| 45 |
+
y_all = train['Survived']
|
| 46 |
+
|
| 47 |
+
num_test = 0.20
|
| 48 |
+
X_train, X_test, y_train, y_test = train_test_split(X_all, y_all, test_size=num_test, random_state=23)
|
| 49 |
+
|
| 50 |
+
clf = RandomForestClassifier()
|
| 51 |
+
clf.fit(X_train, y_train)
|
| 52 |
+
predictions = clf.predict(X_test)
|
| 53 |
+
|
| 54 |
+
def predict_survival(sex, age, fare):
|
| 55 |
+
df = pd.DataFrame.from_dict({'Sex': [sex], 'Age': [age], 'Fare': [fare]})
|
| 56 |
+
df = encode_sex(df)
|
| 57 |
+
df = encode_fares(df)
|
| 58 |
+
df = encode_ages(df)
|
| 59 |
+
pred = clf.predict_proba(df)[0]
|
| 60 |
+
return {'Perishes': float(pred[0]), 'Survives': float(pred[1])}
|
| 61 |
+
|
| 62 |
+
sex = gr.Radio(['female', 'male'], label="Sex", value="male")
|
| 63 |
+
age = gr.Slider(minimum=0, maximum=120, default=22, label="Age")
|
| 64 |
+
fare = gr.Slider(minimum=0, maximum=200, default=100, label="Fare (british pounds)")
|
| 65 |
+
|
| 66 |
+
gr.Interface(predict_survival, [sex, age, fare], "label", live=True, thumbnail="https://raw.githubusercontent.com/gradio-app/hub-titanic/master/thumbnail.png", analytics_enabled=False,
|
| 67 |
+
theme=gr.themes.Soft(), title="Surviving the Titanic", description="What is the probability that a passenger on the Titanic would survive the famous wreck? It depends on their demographics as this live interface demonstrates.").launch();
|