Commit
·
0edb773
1
Parent(s):
6367efb
use hf_hub_download in place of direct URL download
Browse files
app.py
CHANGED
|
@@ -12,7 +12,7 @@ import re
|
|
| 12 |
from sentence_transformers import SentenceTransformer
|
| 13 |
from sklearn.metrics.pairwise import cosine_similarity
|
| 14 |
from tavily import TavilyClient
|
| 15 |
-
from huggingface_hub import InferenceClient
|
| 16 |
|
| 17 |
class CLIPImageClassifier(nn.Module):
|
| 18 |
def __init__(self):
|
|
@@ -39,6 +39,7 @@ HF_TOKEN = None
|
|
| 39 |
embed_model = SentenceTransformer("all-MiniLM-L6-v2")
|
| 40 |
explain_model = "meta-llama/Llama-3.1-8B-Instruct"
|
| 41 |
text_model = "rajyalakshmijampani/fever_finetuned_deberta"
|
|
|
|
| 42 |
wiki = wikipediaapi.Wikipedia(language='en', user_agent='fact-checker/1.0')
|
| 43 |
image_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
| 44 |
|
|
@@ -51,18 +52,12 @@ def get_text_classifier():
|
|
| 51 |
return text_classifier
|
| 52 |
|
| 53 |
def get_image_classifier():
|
| 54 |
-
global image_classifier
|
|
|
|
| 55 |
if image_classifier is None:
|
| 56 |
-
|
| 57 |
-
path = "best_clip_finetuned_classifier.pth"
|
| 58 |
-
|
| 59 |
-
if not os.path.exists(path):
|
| 60 |
-
r = requests.get(url)
|
| 61 |
-
with open(path, "wb") as f:
|
| 62 |
-
f.write(r.content)
|
| 63 |
-
|
| 64 |
image_classifier = CLIPImageClassifier()
|
| 65 |
-
state = torch.load(
|
| 66 |
clean_state = OrderedDict(
|
| 67 |
(k[7:], v) if k.startswith("module.") else (k, v)
|
| 68 |
for k, v in state.items()
|
|
@@ -276,8 +271,9 @@ with gr.Blocks() as demo:
|
|
| 276 |
|
| 277 |
with gr.Tab("Image Detector"):
|
| 278 |
img_input = gr.Image(type="pil", label="Upload Image")
|
| 279 |
-
img_output = gr.Markdown(label="Model Output", value="Results will appear here...")
|
| 280 |
img_button = gr.Button("Classify Image")
|
|
|
|
|
|
|
| 281 |
img_button.click(classify_image, inputs=img_input, outputs=img_output)
|
| 282 |
|
| 283 |
demo.launch()
|
|
|
|
| 12 |
from sentence_transformers import SentenceTransformer
|
| 13 |
from sklearn.metrics.pairwise import cosine_similarity
|
| 14 |
from tavily import TavilyClient
|
| 15 |
+
from huggingface_hub import InferenceClient, hf_hub_download
|
| 16 |
|
| 17 |
class CLIPImageClassifier(nn.Module):
|
| 18 |
def __init__(self):
|
|
|
|
| 39 |
embed_model = SentenceTransformer("all-MiniLM-L6-v2")
|
| 40 |
explain_model = "meta-llama/Llama-3.1-8B-Instruct"
|
| 41 |
text_model = "rajyalakshmijampani/fever_finetuned_deberta"
|
| 42 |
+
image_model = "rajyalakshmijampani/finetuned_clip"
|
| 43 |
wiki = wikipediaapi.Wikipedia(language='en', user_agent='fact-checker/1.0')
|
| 44 |
image_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
| 45 |
|
|
|
|
| 52 |
return text_classifier
|
| 53 |
|
| 54 |
def get_image_classifier():
|
| 55 |
+
global image_classifier, image_model
|
| 56 |
+
filename = "finetuned_clip.pth"
|
| 57 |
if image_classifier is None:
|
| 58 |
+
model_path = hf_hub_download(repo_id=image_model, filename=filename)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
image_classifier = CLIPImageClassifier()
|
| 60 |
+
state = torch.load(model_path, map_location="cpu",weights_only=False)
|
| 61 |
clean_state = OrderedDict(
|
| 62 |
(k[7:], v) if k.startswith("module.") else (k, v)
|
| 63 |
for k, v in state.items()
|
|
|
|
| 271 |
|
| 272 |
with gr.Tab("Image Detector"):
|
| 273 |
img_input = gr.Image(type="pil", label="Upload Image")
|
|
|
|
| 274 |
img_button = gr.Button("Classify Image")
|
| 275 |
+
img_output = gr.Markdown(label="Model Output", value="Results will appear here...")
|
| 276 |
+
|
| 277 |
img_button.click(classify_image, inputs=img_input, outputs=img_output)
|
| 278 |
|
| 279 |
demo.launch()
|