hannahcyberey commited on
Commit
f75f514
·
1 Parent(s): 091d6c0

add inference endpoint

Browse files
activations/deepseek-r1-7b-offset.pt DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:215212fa88787474b66ed52a9c794df094182a421f436e097e8bab6b21eda2a0
3
- size 804066
 
 
 
 
activations/deepseek-r1-7b-steering-vec.pt DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:1046ca2df76f7d7860c3662e2f858f2c29a934989eb7a5b4d2d6975051d987e6
3
- size 804160
 
 
 
 
app.py CHANGED
@@ -1,85 +1,94 @@
 
1
  import logging, json
2
- import threading
3
  from pathlib import Path
4
- from datetime import datetime, timezone
5
- import spaces
6
  import pandas as pd
7
- from transformers import TextIteratorStreamer
8
  import gradio as gr
9
  from gradio_toggle import Toggle
10
- from model import load_model
11
- from scheduler import ParquetScheduler
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
 
13
  logging.basicConfig(level=logging.INFO, format='%(asctime)s %(name)s %(levelname)s:%(message)s')
14
  logger = logging.getLogger(__name__)
15
 
16
- scheduler = ParquetScheduler(
17
- repo_id="hannahcyberey/Censorship-Steering-Logs", every=10,
18
- private=True,
19
- schema={
20
- "prompt": {"_type": "Value", "dtype": "string"},
21
- "steering": {"_type": "Value", "dtype": "bool"},
22
- "coeff": {"_type": "Value", "dtype": "float64"},
23
- "top_p": {"_type": "Value", "dtype": "float64"},
24
- "temperature": {"_type": "Value", "dtype": "float64"},
25
- "reasoning": {"_type": "Value", "dtype": "string"},
26
- "answer": {"_type": "Value", "dtype": "string"},
27
- "timestamp": {"_type": "Value", "dtype": "string"},
28
- }
29
- )
30
-
31
- default_model = "DeepSeek-R1-Distill-Qwen-7B"
32
- model = load_model()
33
- default_config = {"max_new_tokens": 2048, "temperature": 0.6, "top_p": 0.95}
34
  examples = pd.read_csv("assets/examples.csv")
 
 
 
35
 
36
  HEAD = """
37
  <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.7.2/css/all.min.css" integrity="sha512-Evv84Mr4kqVGRNSgIGL/F/aIDqQb7xQ2vcrdIwxfjThSH8CSR7PBEakCr51Ck+w+/U6swU2Im1vVX0SVk9ABhg==" crossorigin="anonymous" referrerpolicy="no-referrer" />
38
  """
39
 
40
  HTML = f"""
41
- <div align="center" style="padding-bottom: var(--spacing-xl);">
42
- <h1><img src="/gradio_api/file=assets/rudder_3094973.png"> LLM Censorship Steering </h1>
43
- <div id="cover">
44
- <img style="height: 120px;" src="/gradio_api/file=assets/demo-cover.png">
45
- <p>🤖: {default_model}</p>
 
46
  </div>
47
  </div>
48
  """
49
 
50
  CSS = """
51
- h1 {font-size: 32px; line-height: 1.5em; margin-bottom: 0em;}
52
- img {display: inline; height: 1.5em;}
53
- a {font-size: 18px;}
54
- div#cover {
55
- display: flex;
56
- flex-direction: column;
57
- align-items: flex-start;
58
- width: fit-content;
59
- padding-top: 1em;
60
- }
61
- label span {color: var(--body-text-color);}
62
- .slider_input_container span {color: var(--body-text-color);}
63
- .slider_input_container {
64
  display: flex;
65
- flex-wrap: wrap;
66
- input {appearance: auto;}
 
 
 
 
 
 
 
 
 
 
 
 
 
67
  }
68
- label span p {color: var(--block-label-text-color);}
69
- .toggle-label {color: var(--body-text-color);}
70
- div#component-4 .form {align-items: center; background-color: var(--block-background-fill);}
71
- div#component-6 {padding-bottom: 0;}
72
- div#component-6 .wrap .head {
 
 
 
 
73
  justify-content: unset;
74
  label {margin-right: var(--size-2);}
75
- label span {margin-bottom: 0;}
 
 
 
76
  }
77
  """
78
 
79
 
80
  slider_info = """\
81
  <div style='display: flex; justify-content: space-between; line-height: normal;'>\
82
- <span style='font-size: var(--block-info-text-size);'>Less censorship</span><span style='font-size: var(--block-info-text-size);'>More censorship</span>\
 
83
  </div>\
84
  """\
85
 
@@ -109,113 +118,214 @@ async() => {
109
  """ % (slider_info, slider_ticks)
110
 
111
 
112
- class Generator():
113
- def __init__(self):
114
- self.data = {}
115
-
116
- @spaces.GPU(duration=90)
117
- def generate_output(self, prompt, steering, coeff, generation_config):
118
- streamer = TextIteratorStreamer(model.tokenizer, timeout=10, skip_prompt=True, skip_special_tokens=True)
119
-
120
- thread = threading.Thread(
121
- target=model.generate,
122
- args=(prompt, streamer, steering, coeff, generation_config)
123
- )
124
- thread.start()
125
-
126
- generated_text = "<think>"
127
- for new_text in streamer:
128
- generated_text += new_text
129
- yield generated_text
130
 
131
- thread.join()
132
-
133
- def run(
134
- self, prompt: str, steering: bool, coeff: float,
135
- max_new_tokens: int, top_p: float = 1.0, temperature: float = 1.0
136
- ):
137
- self.data = {
138
- "prompt": prompt,
139
- "steering": steering,
140
- "coeff": coeff,
141
- "top_p": top_p,
142
- "temperature": temperature,
143
- }
144
- generation_config = {
145
- "max_new_tokens": max_new_tokens,
146
- "temperature": temperature,
147
- "top_p": top_p
148
- }
149
- logger.info("steering=%s, coeff=%0.1f, generation_config=%s", str(steering), coeff, repr(generation_config))
150
-
151
- yield from self.generate_output(prompt, steering, coeff, generation_config)
152
-
153
- def save_output(self, output: str):
154
- if "</think>" in output:
155
- p = [p for p in output.partition("</think>") if p != ""]
156
- reasoning = "".join(p[:-1])
157
- if len(p) == 1:
158
- answer = None
159
- else:
160
- answer = p[-1]
161
- else:
162
- answer = None
163
- reasoning = output
164
 
165
- self.data["reasoning"] = reasoning
166
- self.data["answer"] = answer
167
- self.data["timestamp"] = datetime.now(timezone.utc).isoformat()
168
- scheduler.append(self.data)
169
 
 
170
  with open("outputs.jsonl", "a") as f:
171
- json.dump(self.data, f)
172
- f.write("\n")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
173
 
 
 
 
 
174
 
175
- def steering_switch(toggle_value):
176
- if toggle_value is True:
177
- return gr.update(label="Steering"), gr.update(interactive=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
178
  else:
179
- return gr.update(label="No Steering"), gr.update(interactive=False)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
180
 
181
 
182
  gr.set_static_paths(paths=[Path.cwd().absolute() / "assets"])
183
  theme = gr.themes.Base(primary_hue="emerald", text_size=gr.themes.sizes.text_lg).set()
184
- generator = Generator()
185
 
186
  with gr.Blocks(title="LLM Censorship Steering", theme=theme, head=HEAD, css=CSS, js=JS) as demo:
 
 
 
 
187
  gr.HTML(HTML)
188
 
 
 
 
 
 
 
 
 
 
 
 
 
189
  with gr.Row():
190
  with gr.Column(scale=1):
191
  with gr.Row():
192
- steer_toggle = Toggle(label="Steering", value=True, interactive=True, scale=0.2)
193
- coeff = gr.Slider(label="Steering Coefficient:", value=-1, minimum=-2, maximum=2, step=0.1, scale=0.8, show_reset_button=False)
 
 
 
 
 
 
 
194
 
195
  with gr.Accordion("⚙️ Advanced Settings", open=False):
196
  with gr.Row():
197
- temperature = gr.Slider(0, 1, step=0.1, value=default_config['temperature'], interactive=True, label="Temperature", scale=1)
198
- top_p = gr.Slider(0, 1, step=0.1, value=default_config['top_p'], interactive=True, label="Top p", scale=1)
199
- max_new_tokens = gr.Number(minimum=10, maximum=2048, value=default_config['max_new_tokens'], interactive=True, label="Max new tokens", scale=0.5)
200
 
201
- input_text = gr.Textbox(label="Input", placeholder="Enter your prompt here...", lines=5)
202
 
203
  with gr.Row():
204
  clear_btn = gr.ClearButton()
205
  generate_btn = gr.Button("Generate", variant="primary")
206
 
207
  with gr.Column(scale=1):
208
- output = gr.Textbox(label="Output", lines=16, max_lines=16)
 
 
 
 
209
 
210
  gr.HTML("<p>‼️ For research purposes, we log user inputs and generated outputs. Please avoid submitting any confidential or personal information.</p>")
211
  gr.Markdown("#### Examples")
212
  gr.Examples(examples=examples[examples["type"] == "sensitive"].prompt.tolist(), inputs=input_text, label="Sensitive")
213
  gr.Examples(examples=examples[examples["type"] == "harmful"].prompt.tolist(), inputs=input_text, label="Harmful")
214
-
215
 
216
- steer_toggle.change(steering_switch, inputs=steer_toggle, outputs=[steer_toggle, coeff])
217
- generate_btn.click(generator.run, inputs=[input_text, steer_toggle, coeff, max_new_tokens, top_p, temperature], outputs=output).then(generator.save_output, inputs=output)
 
 
218
  clear_btn.add([input_text, output])
 
 
 
 
 
 
 
 
 
 
 
219
 
 
220
  if __name__ == "__main__":
 
221
  demo.launch(debug=True)
 
1
+ import os
2
  import logging, json
 
3
  from pathlib import Path
4
+ import asyncio
5
+ import aiohttp
6
  import pandas as pd
 
7
  import gradio as gr
8
  from gradio_toggle import Toggle
9
+ from scheduler import load_scheduler
10
+ from schemas import UserRequest, SteeringOutput, CONFIG
11
+
12
+
13
+ MAX_RETRIES = 10
14
+ MAX_RETRY_WAIT_TIME = 75
15
+ MIN_RETRY_WAIT_TIME = 5
16
+ ENDPOINT_ALIVE = False
17
+
18
+ HF_TOKEN = os.getenv('HF_TOKEN')
19
+ API_URL = "https://a6k5m81qw14hkvhz.us-east-1.aws.endpoints.huggingface.cloud"
20
+ headers = {
21
+ "Accept" : "application/json",
22
+ "Authorization": f"Bearer {HF_TOKEN}",
23
+ "Content-Type": "application/json"
24
+ }
25
 
26
  logging.basicConfig(level=logging.INFO, format='%(asctime)s %(name)s %(levelname)s:%(message)s')
27
  logger = logging.getLogger(__name__)
28
 
29
+ model_name = "DeepSeek-R1-Distill-Qwen-7B"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30
  examples = pd.read_csv("assets/examples.csv")
31
+ instances = {}
32
+ scheduler = load_scheduler()
33
+
34
 
35
  HEAD = """
36
  <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.7.2/css/all.min.css" integrity="sha512-Evv84Mr4kqVGRNSgIGL/F/aIDqQb7xQ2vcrdIwxfjThSH8CSR7PBEakCr51Ck+w+/U6swU2Im1vVX0SVk9ABhg==" crossorigin="anonymous" referrerpolicy="no-referrer" />
37
  """
38
 
39
  HTML = f"""
40
+ <div id="banner">
41
+ <h1 style="font-size: 32px; line-height: 1.5em; margin-bottom: 0em;">
42
+ <img src="/gradio_api/file=assets/rudder_3094973.png" style="display: inline; height: 1.5em;"> LLM Censorship Steering
43
+ </h1>
44
+ <div id="cover" style="height: 130px;">
45
+ <img style="height: 100%; padding-top: 0.5em;" src="/gradio_api/file=assets/demo-cover.png">
46
  </div>
47
  </div>
48
  """
49
 
50
  CSS = """
51
+ div#banner {
 
 
 
 
 
 
 
 
 
 
 
 
52
  display: flex;
53
+ flex-direction: column;
54
+ align-items: center;
55
+ justify-content: center;
56
+ }
57
+ div#component-8 .form {
58
+ padding-top: 7.5px;
59
+ background: var(--block-background-fill);
60
+ }
61
+ div#component-9 {
62
+ .toggle-label {color: var(--body-text-color);}
63
+ span p {
64
+ font-size: var(--block-info-text-size);
65
+ line-height: var(--line-sm);
66
+ color: var(--block-label-text-color);
67
+ }
68
  }
69
+ div#component-10 {
70
+ .slider_input_container span {color: var(--body-text-color);}
71
+ .slider_input_container {
72
+ display: flex;
73
+ flex-wrap: wrap;
74
+ input {appearance: auto;}
75
+ }
76
+ }
77
+ div#component-10 .wrap .head {
78
  justify-content: unset;
79
  label {margin-right: var(--size-2);}
80
+ label span {
81
+ color: var(--body-text-color);
82
+ margin-bottom: 0;
83
+ }
84
  }
85
  """
86
 
87
 
88
  slider_info = """\
89
  <div style='display: flex; justify-content: space-between; line-height: normal;'>\
90
+ <span style='font-size: var(--block-info-text-size); color: var(--block-label-text-color);'>Less censorship</span>\
91
+ <span style='font-size: var(--block-info-text-size); color: var(--block-label-text-color);'>More censorship</span>\
92
  </div>\
93
  """\
94
 
 
118
  """ % (slider_info, slider_ticks)
119
 
120
 
121
+ def initialize_instance(request: gr.Request):
122
+ instances[request.session_hash] = []
123
+ logger.info("Number of connections: %d", len(instances))
124
+ return request.session_hash
 
 
 
 
 
 
 
 
 
 
 
 
 
 
125
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
126
 
127
+ def cleanup_instance(request: gr.Request):
128
+ global ENDPOINT_ALIVE
129
+
130
+ session_id = request.session_hash
131
 
132
+ if session_id in instances:
133
  with open("outputs.jsonl", "a") as f:
134
+ for data in instances[session_id]:
135
+ scheduler.append(data.model_dump())
136
+ json.dump(data.model_dump(), f)
137
+ f.write("\n")
138
+
139
+ del instances[session_id]
140
+
141
+ if len(instances) == 0:
142
+ ENDPOINT_ALIVE = False
143
+
144
+ logger.info("Number of connections: %d", len(instances))
145
+
146
+
147
+ async def initialize_endpoint():
148
+ async with aiohttp.ClientSession() as session:
149
+ async with session.get(f"{API_URL}/health", headers=headers) as resp:
150
+ if resp.status == 200:
151
+ return True
152
+ else:
153
+ resp_text = await resp.text()
154
+ logger.error("API Error Code: %d, Message: %s", resp.status, resp_text)
155
+ return False
156
+
157
 
158
+ async def get_endpoint_state():
159
+ global ENDPOINT_ALIVE
160
+ n = 0
161
+ sleep_time = MAX_RETRY_WAIT_TIME
162
 
163
+ while n < MAX_RETRIES:
164
+ n += 1
165
+
166
+ if not ENDPOINT_ALIVE:
167
+ logger.info("Initializing inference endpoint")
168
+ yield "Initializing"
169
+ ENDPOINT_ALIVE = await initialize_endpoint()
170
+
171
+ if ENDPOINT_ALIVE:
172
+ logger.info("Inference endpoint is ready")
173
+ gr.Info("Inference endpoint is ready")
174
+ yield "Ready"
175
+ break
176
+
177
+ gr.Warning("Initializing inference endpoint\n(This may take 2~3 minutes)", duration=sleep_time)
178
+ await asyncio.sleep(sleep_time)
179
+ sleep_time = max(sleep_time * 0.8, MIN_RETRY_WAIT_TIME)
180
+
181
+ if n == MAX_RETRIES:
182
+ yield "Server Error"
183
+
184
+
185
+ async def save_output(req: UserRequest, output: str):
186
+ if "</think>" in output:
187
+ p = [p for p in output.partition("</think>") if p != ""]
188
+ reasoning = "".join(p[:-1])
189
+ if len(p) == 1:
190
+ answer = None
191
+ else:
192
+ answer = p[-1]
193
  else:
194
+ answer = None
195
+ reasoning = output
196
+
197
+ steering_output = SteeringOutput(**req.model_dump(), reasoning=reasoning, answer=answer)
198
+ instances[req.session_id].append(steering_output)
199
+
200
+
201
+ async def generate(
202
+ session_id: str, prompt: str, steering: bool, coeff: float,
203
+ max_new_tokens: int, top_p: float, temperature: float
204
+ ):
205
+ req = UserRequest(
206
+ session_id=session_id, prompt=prompt, steering=steering, coeff=coeff,
207
+ max_new_tokens=max_new_tokens, top_p=top_p, temperature=temperature
208
+ )
209
+
210
+ data = req.get_api_format()
211
+ logger.info("User Request: %s", data)
212
+
213
+ generated_text = ""
214
+ session = aiohttp.ClientSession()
215
+
216
+ async with session.post(f"{API_URL}/generate", headers=headers, json=data) as resp:
217
+ if resp.status == 200:
218
+ generated_text += "<think>"
219
+ async for chunk, _ in resp.content.iter_chunks():
220
+ generated_text += chunk.decode()
221
+ yield generated_text
222
+ else:
223
+ logger.error("API Error Ccode: %d, Error Message: %s", resp.status, resp.text())
224
+ raise gr.Error("API Server Error")
225
+
226
+ await session.close()
227
+
228
+ if generated_text != "":
229
+ await save_output(req, generated_text)
230
+
231
+
232
+ async def post_process(session_id):
233
+ return instances[session_id][-1].request_id, gr.update(interactive=True), gr.update(interactive=True)
234
+
235
+
236
+ async def output_feedback(session_id, request_id, feedback):
237
+ logger.info("Feedback received for request %s: %s", str(request_id), feedback)
238
+ try:
239
+ data = instances[session_id].pop()
240
+ if data.request_id == request_id:
241
+ if "Upvote" in feedback:
242
+ setattr(data, "upvote", True)
243
+ elif "Downvote" in feedback:
244
+ setattr(data, "upvote", False)
245
+
246
+ instances[session_id].append(data)
247
+ gr.Info("Thank you for your feedback!")
248
+ except:
249
+ logger.debug("Feedback submission error")
250
 
251
 
252
  gr.set_static_paths(paths=[Path.cwd().absolute() / "assets"])
253
  theme = gr.themes.Base(primary_hue="emerald", text_size=gr.themes.sizes.text_lg).set()
 
254
 
255
  with gr.Blocks(title="LLM Censorship Steering", theme=theme, head=HEAD, css=CSS, js=JS) as demo:
256
+ session_id = gr.State()
257
+ request_id = gr.State()
258
+ endpoint_state = gr.State(get_endpoint_state)
259
+
260
  gr.HTML(HTML)
261
 
262
+ @gr.render(inputs=endpoint_state, triggers=[endpoint_state.change])
263
+ def render_state(endpoint_state):
264
+ if endpoint_state == "Ready":
265
+ color = "green"
266
+ elif endpoint_state == "Server Error":
267
+ color = "red"
268
+ else:
269
+ color = "orange"
270
+
271
+ if endpoint_state != None:
272
+ gr.Markdown(f'🤖 {model_name} | Inference Endpoint State: <span style="color:{color}; font-weight: bold;">{endpoint_state}</span>')
273
+
274
  with gr.Row():
275
  with gr.Column(scale=1):
276
  with gr.Row():
277
+ steer_toggle = Toggle(label="Steering", info="Turn off to generate original outputs", value=True, interactive=True, scale=2)
278
+ coeff = gr.Slider(label="Steering Coefficient:", value=-1.0, minimum=-2, maximum=2, step=0.1, scale=8, show_reset_button=False)
279
+
280
+ @gr.on(inputs=[steer_toggle], outputs=[steer_toggle, coeff], triggers=[steer_toggle.change])
281
+ def update_toggle(toggle_value):
282
+ if toggle_value is True:
283
+ return gr.update(label="Steering", info="Turn off to generate original outputs"), gr.update(interactive=True)
284
+ else:
285
+ return gr.update(label="No Steering", info="Turn on to steer model outputs"), gr.update(interactive=False)
286
 
287
  with gr.Accordion("⚙️ Advanced Settings", open=False):
288
  with gr.Row():
289
+ temperature = gr.Slider(0, 1, step=0.1, value=CONFIG["temperature"], interactive=True, label="Temperature", scale=2)
290
+ top_p = gr.Slider(0, 1, step=0.1, value=CONFIG["top_p"], interactive=True, label="Top p", scale=2)
291
+ max_new_tokens = gr.Number(CONFIG["max_new_tokens"], minimum=10, maximum=CONFIG["max_new_tokens"], interactive=True, label="Max new tokens", scale=1)
292
 
293
+ input_text = gr.Textbox(label="Input", placeholder="Enter your prompt here...", lines=6, interactive=True)
294
 
295
  with gr.Row():
296
  clear_btn = gr.ClearButton()
297
  generate_btn = gr.Button("Generate", variant="primary")
298
 
299
  with gr.Column(scale=1):
300
+ output = gr.Textbox(label="Output", lines=15, max_lines=15, interactive=False)
301
+
302
+ with gr.Row():
303
+ upvote_btn = gr.Button("👍 Upvote", interactive=False)
304
+ downvote_btn = gr.Button("👎 Downvote", interactive=False)
305
 
306
  gr.HTML("<p>‼️ For research purposes, we log user inputs and generated outputs. Please avoid submitting any confidential or personal information.</p>")
307
  gr.Markdown("#### Examples")
308
  gr.Examples(examples=examples[examples["type"] == "sensitive"].prompt.tolist(), inputs=input_text, label="Sensitive")
309
  gr.Examples(examples=examples[examples["type"] == "harmful"].prompt.tolist(), inputs=input_text, label="Harmful")
 
310
 
311
+ @gr.on(triggers=[clear_btn.click], outputs=[request_id, upvote_btn, downvote_btn])
312
+ def clear():
313
+ return None, gr.update(interactive=False), gr.update(interactive=False)
314
+
315
  clear_btn.add([input_text, output])
316
+ generate_btn.click(
317
+ generate, inputs=[session_id, input_text, steer_toggle, coeff, max_new_tokens, top_p, temperature], outputs=output
318
+ ).success(
319
+ post_process, inputs=session_id, outputs=[request_id, upvote_btn, downvote_btn]
320
+ )
321
+
322
+ upvote_btn.click(output_feedback, inputs=[session_id, request_id, upvote_btn])
323
+ downvote_btn.click(output_feedback, inputs=[session_id, request_id, downvote_btn])
324
+
325
+ demo.load(initialize_instance, outputs=session_id)
326
+ demo.unload(cleanup_instance)
327
 
328
+
329
  if __name__ == "__main__":
330
+ demo.queue(default_concurrency_limit=5)
331
  demo.launch(debug=True)
model.py DELETED
@@ -1,118 +0,0 @@
1
- import os, warnings
2
- from operator import attrgetter
3
- from typing import List, Dict, Callable, Tuple
4
-
5
- import torch
6
- import torch.nn.functional as F
7
- from torchtyping import TensorType
8
- from transformers import TextIteratorStreamer
9
- from transformers import AutoTokenizer, BatchEncoding
10
- from nnsight import LanguageModel
11
- from nnsight.intervention import Envoy
12
-
13
- warnings.filterwarnings("ignore")
14
- os.environ["TOKENIZERS_PARALLELISM"] = "false"
15
-
16
- config = {
17
- "model_name": "deepseek-ai/DeepSeek-R1-Distill-Qwen-7B",
18
- "steering_vec": "activations/deepseek-r1-7b-steering-vec.pt",
19
- "offset": "activations/deepseek-r1-7b-offset.pt",
20
- "layer": 25,
21
- "k": 200,
22
- }
23
-
24
-
25
- def detect_module_attrs(model: LanguageModel) -> str:
26
- if "model" in model._modules and "layers" in model.model._modules:
27
- return "model.layers"
28
- elif "transformers" in model._modules and "h" in model.transformers._modules:
29
- return "transformers.h"
30
- else:
31
- raise Exception("Failed to detect module attributes.")
32
-
33
-
34
- def orthogonal_projection(a: TensorType[..., -1], unit_vec: TensorType[-1]) -> TensorType[..., -1]:
35
- return a @ unit_vec.unsqueeze(-1) * unit_vec
36
-
37
-
38
- def get_intervention_func(steering_vec: TensorType, offset=0, k=0, coeff=0) -> Callable:
39
- """Get function for model intervention."""
40
- unit_vec = F.normalize(steering_vec, dim=-1)
41
- rescaled_vec = unit_vec * k
42
- return lambda acts: acts - orthogonal_projection(acts - offset, unit_vec) + coeff * rescaled_vec
43
-
44
-
45
-
46
- class ModelBase:
47
- def __init__(
48
- self, model_name: str,
49
- steering_vec: TensorType, offset: TensorType,
50
- k: float, steering_layer: int,
51
- tokenizer: AutoTokenizer = None, block_module_attr=None
52
- ):
53
- if tokenizer is None:
54
- self.tokenizer = self._load_tokenizer(model_name)
55
- else:
56
- self.tokenizer = tokenizer
57
- self.model = self._load_model(model_name, self.tokenizer)
58
-
59
- self.device = self.model.device
60
- self.hidden_size = self.model.config.hidden_size
61
- if block_module_attr is None:
62
- self.block_modules = self.get_module(detect_module_attrs(self.model))
63
- else:
64
- self.block_modules = self.get_module(block_module_attr)
65
- self.steering_layer = steering_layer
66
- self.k = k
67
- self.steering_vec, self.offset = self.set_dtype(steering_vec, offset)
68
-
69
- def _load_model(self, model_name: str, tokenizer: AutoTokenizer) -> LanguageModel:
70
- return LanguageModel(model_name, tokenizer=tokenizer, dispatch=True, trust_remote_code=True, device_map="auto", torch_dtype=torch.bfloat16)
71
-
72
- def _load_tokenizer(self, model_name) -> AutoTokenizer:
73
- tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
74
- tokenizer.padding_side = "left"
75
- if not tokenizer.pad_token:
76
- tokenizer.pad_token_id = tokenizer.eos_token_id
77
- tokenizer.pad_token = tokenizer.eos_token
78
- return tokenizer
79
-
80
- def tokenize(self, prompt: str) -> BatchEncoding:
81
- return self.tokenizer(prompt, padding=True, truncation=False, return_tensors="pt")
82
-
83
- def get_module(self, attr: str) -> Envoy:
84
- return attrgetter(attr)(self.model)
85
-
86
- def set_dtype(self, *vars):
87
- if len(vars) == 1:
88
- return vars[0].to(self.model.dtype)
89
- else:
90
- return (var.to(self.model.dtype) for var in vars)
91
-
92
- def apply_chat_template(self, instruction: str) -> List[str]:
93
- messages = [{"role": "user", "content": instruction}]
94
- return self.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
95
-
96
- def generate(self, prompt: str, streamer: TextIteratorStreamer, steering: bool, coeff: float, generation_config: Dict):
97
- formatted_prompt = self.apply_chat_template(prompt)
98
- inputs = self.tokenize(formatted_prompt)
99
-
100
- if steering:
101
- intervene_func = get_intervention_func(self.steering_vec, offset=self.offset, k=self.k, coeff=coeff)
102
-
103
- with self.model.generate(inputs, do_sample=True, streamer=streamer, **generation_config):
104
- self.block_modules.all()
105
- acts = self.block_modules[self.steering_layer].output[0]
106
- new_acts = intervene_func(acts)
107
- self.block_modules[self.steering_layer].output[0][:] = new_acts
108
- else:
109
- inputs = inputs.to(self.device)
110
- _ = self.model._model.generate(**inputs, do_sample=True, streamer=streamer, **generation_config)
111
-
112
-
113
- def load_model() -> ModelBase:
114
- steering_vec = torch.load(config['steering_vec'], weights_only=True)
115
- offset = torch.load(config['offset'], weights_only=True)
116
- model = ModelBase(config['model_name'], steering_vec=steering_vec, offset=offset, k=config['k'], steering_layer=config['layer'])
117
- model.tokenizer.chat_template = model.tokenizer.chat_template.replace("<|Assistant|><think>\\n", "<|Assistant|><think>")
118
- return model
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
requirements.txt CHANGED
@@ -1,11 +1,4 @@
1
- transformers==4.47.1
2
- accelerate==0.33.0
3
- nnsight==0.4.3
4
- triton==3.1.0
5
- torchtyping==0.1.5
6
- tiktoken==0.8.0
7
- transformers_stream_generator==0.0.5
8
- zstandard==0.23.0
9
  pandas==2.2.2
10
  pyarrow==19.0.1
11
  gradio_toggle==2.0.2
 
1
+ aiohttp==3.11.16
 
 
 
 
 
 
 
2
  pandas==2.2.2
3
  pyarrow==19.0.1
4
  gradio_toggle==2.0.2
scheduler.py CHANGED
@@ -2,7 +2,6 @@ import json
2
  import logging
3
  import tempfile
4
  import uuid
5
- from pathlib import Path
6
  from typing import Optional, Union, Dict, List, Any
7
 
8
  import pyarrow as pa
@@ -13,49 +12,38 @@ from huggingface_hub.hf_api import HfApi
13
  logging.basicConfig(level=logging.INFO, format='%(asctime)s %(name)s %(levelname)s:%(message)s')
14
  logger = logging.getLogger(__name__)
15
 
16
-
17
- def _infer_schema(key: str, value: Any) -> Dict[str, str]:
18
- """
19
- Infer schema for the `datasets` library.
20
-
21
- See https://huggingface.co/docs/datasets/main/en/package_reference/main_classes#datasets.Value.
22
- """
23
- if "image" in key:
24
- return {"_type": "Image"}
25
- if "audio" in key:
26
- return {"_type": "Audio"}
27
- if isinstance(value, int):
28
- return {"_type": "Value", "dtype": "int64"}
29
- if isinstance(value, float):
30
- return {"_type": "Value", "dtype": "float64"}
31
- if isinstance(value, bool):
32
- return {"_type": "Value", "dtype": "bool"}
33
- if isinstance(value, bytes):
34
- return {"_type": "Value", "dtype": "binary"}
35
- # Otherwise in last resort => convert it to a string
36
- return {"_type": "Value", "dtype": "string"}
37
 
38
 
39
  class ParquetScheduler(CommitScheduler):
40
  """
41
  Reference: https://huggingface.co/spaces/Wauplin/space_to_dataset_saver
42
- Usage: configure the scheduler with a repo id. Once started, you can add data to be uploaded to the Hub. 1 `.append`
43
- call will result in 1 row in your final dataset.
 
44
 
45
- ```py
46
- # Start scheduler
47
- >>> scheduler = ParquetScheduler(repo_id="my-parquet-dataset")
48
-
49
- # Append some data to be uploaded
50
- >>> scheduler.append({...})
51
- >>> scheduler.append({...})
52
- >>> scheduler.append({...})
53
- ```
54
-
55
- The scheduler will automatically infer the schema from the data it pushes.
56
- Optionally, you can manually set the schema yourself:
57
 
58
  ```py
 
59
  >>> scheduler = ParquetScheduler(
60
  ... repo_id="my-parquet-dataset",
61
  ... schema={
@@ -65,13 +53,16 @@ class ParquetScheduler(CommitScheduler):
65
  ... "image": {"_type": "Image"},
66
  ... },
67
  ... )
 
 
 
68
  """
69
 
70
  def __init__(
71
  self,
72
  *,
73
  repo_id: str,
74
- schema: Optional[Dict[str, Dict[str, str]]] = None,
75
  every: Union[int, float] = 5, # Number of minutes between each commits
76
  path_in_repo: Optional[str] = "data",
77
  repo_type: Optional[str] = "dataset",
@@ -80,6 +71,7 @@ class ParquetScheduler(CommitScheduler):
80
  token: Optional[str] = None,
81
  allow_patterns: Union[List[str], str, None] = None,
82
  ignore_patterns: Union[List[str], str, None] = None,
 
83
  hf_api: Optional[HfApi] = None,
84
  ) -> None:
85
  super().__init__(
@@ -93,6 +85,7 @@ class ParquetScheduler(CommitScheduler):
93
  token=token,
94
  allow_patterns=allow_patterns,
95
  ignore_patterns=ignore_patterns,
 
96
  hf_api=hf_api,
97
  )
98
 
@@ -113,29 +106,9 @@ class ParquetScheduler(CommitScheduler):
113
  return
114
  logger.info("Got %d item(s) to commit.", len(rows))
115
 
116
- # Load images + create 'features' config for datasets library
117
- schema: Dict[str, Dict] = self._schema or {}
118
- path_to_cleanup: List[Path] = []
119
- for row in rows:
120
- for key, value in row.items():
121
- # Infer schema (for `datasets` library)
122
- if key not in schema:
123
- schema[key] = _infer_schema(key, value)
124
-
125
- # Load binary files if necessary
126
- if schema[key]["_type"] in ("Image", "Audio"):
127
- # It's an image or audio: we load the bytes and remember to cleanup the file
128
- file_path = Path(value)
129
- if file_path.is_file():
130
- row[key] = {
131
- "path": file_path.name,
132
- "bytes": file_path.read_bytes(),
133
- }
134
- path_to_cleanup.append(file_path)
135
-
136
  # Complete rows if needed
137
  for row in rows:
138
- for feature in schema:
139
  if feature not in row:
140
  row[feature] = None
141
 
@@ -144,7 +117,7 @@ class ParquetScheduler(CommitScheduler):
144
 
145
  # Add metadata (used by datasets library)
146
  table = table.replace_schema_metadata(
147
- {"huggingface": json.dumps({"info": {"features": schema}})}
148
  )
149
 
150
  # Write to parquet file
@@ -163,5 +136,4 @@ class ParquetScheduler(CommitScheduler):
163
 
164
  # Cleanup
165
  archive_file.close()
166
- for path in path_to_cleanup:
167
- path.unlink(missing_ok=True)
 
2
  import logging
3
  import tempfile
4
  import uuid
 
5
  from typing import Optional, Union, Dict, List, Any
6
 
7
  import pyarrow as pa
 
12
  logging.basicConfig(level=logging.INFO, format='%(asctime)s %(name)s %(levelname)s:%(message)s')
13
  logger = logging.getLogger(__name__)
14
 
15
+ def load_scheduler():
16
+ return ParquetScheduler(
17
+ repo_id="hannahcyberey/Censorship-Steering-Logs", every=10,
18
+ private=True,
19
+ squash_history=False,
20
+ schema={
21
+ "session_id": {"_type": "Value", "dtype": "string"},
22
+ "prompt": {"_type": "Value", "dtype": "string"},
23
+ "steering": {"_type": "Value", "dtype": "bool"},
24
+ "coeff": {"_type": "Value", "dtype": "float64"},
25
+ "top_p": {"_type": "Value", "dtype": "float64"},
26
+ "temperature": {"_type": "Value", "dtype": "float64"},
27
+ "reasoning": {"_type": "Value", "dtype": "string"},
28
+ "answer": {"_type": "Value", "dtype": "string"},
29
+ "upvote": {"_type": "Value", "dtype": "bool"},
30
+ "timestamp": {"_type": "Value", "dtype": "string"},
31
+ }
32
+ )
 
 
 
33
 
34
 
35
  class ParquetScheduler(CommitScheduler):
36
  """
37
  Reference: https://huggingface.co/spaces/Wauplin/space_to_dataset_saver
38
+ Usage:
39
+ Configure the scheduler with a repo id. Once started, you can add data to be uploaded to the Hub.
40
+ 1 `.append` call will result in 1 row in your final dataset.
41
 
42
+ List of possible dtypes:
43
+ https://huggingface.co/docs/datasets/main/en/package_reference/main_classes#datasets.Value.
 
 
 
 
 
 
 
 
 
 
44
 
45
  ```py
46
+ # Start scheduler
47
  >>> scheduler = ParquetScheduler(
48
  ... repo_id="my-parquet-dataset",
49
  ... schema={
 
53
  ... "image": {"_type": "Image"},
54
  ... },
55
  ... )
56
+
57
+ # Append some data to be uploaded
58
+ >>> scheduler.append({...})
59
  """
60
 
61
  def __init__(
62
  self,
63
  *,
64
  repo_id: str,
65
+ schema: Dict[str, Dict[str, str]],
66
  every: Union[int, float] = 5, # Number of minutes between each commits
67
  path_in_repo: Optional[str] = "data",
68
  repo_type: Optional[str] = "dataset",
 
71
  token: Optional[str] = None,
72
  allow_patterns: Union[List[str], str, None] = None,
73
  ignore_patterns: Union[List[str], str, None] = None,
74
+ squash_history: Optional[bool] = False,
75
  hf_api: Optional[HfApi] = None,
76
  ) -> None:
77
  super().__init__(
 
85
  token=token,
86
  allow_patterns=allow_patterns,
87
  ignore_patterns=ignore_patterns,
88
+ squash_history=squash_history,
89
  hf_api=hf_api,
90
  )
91
 
 
106
  return
107
  logger.info("Got %d item(s) to commit.", len(rows))
108
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
109
  # Complete rows if needed
110
  for row in rows:
111
+ for feature in self._schema:
112
  if feature not in row:
113
  row[feature] = None
114
 
 
117
 
118
  # Add metadata (used by datasets library)
119
  table = table.replace_schema_metadata(
120
+ {"huggingface": json.dumps({"info": {"features": self._schema}})}
121
  )
122
 
123
  # Write to parquet file
 
136
 
137
  # Cleanup
138
  archive_file.close()
139
+
 
schemas.py ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import uuid
2
+ from datetime import datetime, timezone
3
+ from pydantic import BaseModel, Field
4
+ from pydantic.json_schema import SkipJsonSchema
5
+
6
+ CONFIG = {
7
+ "max_new_tokens": 3048,
8
+ "top_p": 0.95,
9
+ "temperature": 0.6
10
+ }
11
+
12
+ class UserRequest(BaseModel):
13
+ session_id: str
14
+ request_id: uuid.UUID = Field(uuid.uuid4())
15
+ prompt: str = None
16
+ steering: bool = True
17
+ coeff: float = -1.0
18
+ max_new_tokens: int = Field(CONFIG["max_new_tokens"], le=3048)
19
+ top_p: float = Field(CONFIG["top_p"], ge=0.0, le=1.0)
20
+ temperature: float = Field(CONFIG["temperature"], ge=0.0, le=1.0)
21
+
22
+ def get_api_format(self):
23
+ return {
24
+ "prompt": self.prompt,
25
+ "steering": self.steering,
26
+ "coeff": self.coeff,
27
+ "generation_config": {
28
+ "max_new_tokens": self.max_new_tokens,
29
+ "top_p": self.top_p,
30
+ "temperature": self.temperature
31
+ }
32
+ }
33
+
34
+
35
+ class SteeringOutput(UserRequest):
36
+ request_id: SkipJsonSchema[uuid.UUID] = Field(exclude=True)
37
+ max_new_tokens: SkipJsonSchema[int] = Field(exclude=True)
38
+ reasoning: str = None
39
+ answer: str = None
40
+ upvote: bool = None
41
+ timestamp: str = Field(datetime.now(timezone.utc).isoformat())