Spaces:
Configuration error
Configuration error
heheyas
commited on
Commit
·
b1531dc
1
Parent(s):
3667a5a
update app.py
Browse files- app.py +107 -139
- app_bkp.py +294 -0
app.py
CHANGED
|
@@ -25,6 +25,7 @@ from glob import glob
|
|
| 25 |
from mediapy import write_video
|
| 26 |
from pathlib import Path
|
| 27 |
import spaces
|
|
|
|
| 28 |
|
| 29 |
|
| 30 |
@spaces.GPU
|
|
@@ -142,153 +143,120 @@ def do_sample(
|
|
| 142 |
return video_path
|
| 143 |
|
| 144 |
|
|
|
|
| 145 |
def change_model_params(model, min_cfg, max_cfg):
|
| 146 |
model.sampler.guider.max_scale = max_cfg
|
| 147 |
model.sampler.guider.min_scale = min_cfg
|
| 148 |
|
| 149 |
|
| 150 |
-
|
| 151 |
-
def launch(device="cuda", share=False):
|
| 152 |
-
model_config = "./scripts/pub/configs/V3D_512.yaml"
|
| 153 |
-
num_frames = OmegaConf.load(
|
| 154 |
-
model_config
|
| 155 |
-
).model.params.sampler_config.params.guider_config.params.num_frames
|
| 156 |
-
print("Detected num_frames:", num_frames)
|
| 157 |
-
# num_steps = default(num_steps, 25)
|
| 158 |
-
num_steps = 25
|
| 159 |
-
output_folder = "outputs/V3D_512"
|
| 160 |
-
|
| 161 |
-
sd = load_safetensors("./ckpts/svd_xt.safetensors")
|
| 162 |
-
clip_model_config = OmegaConf.load("./configs/embedder/clip_image.yaml")
|
| 163 |
-
clip_model = instantiate_from_config(clip_model_config).eval()
|
| 164 |
-
clip_sd = dict()
|
| 165 |
-
for k, v in sd.items():
|
| 166 |
-
if "conditioner.embedders.0" in k:
|
| 167 |
-
clip_sd[k.replace("conditioner.embedders.0.", "")] = v
|
| 168 |
-
clip_model.load_state_dict(clip_sd)
|
| 169 |
-
clip_model = clip_model.to(device)
|
| 170 |
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
ae_model.load_state_dict(encoder_sd)
|
| 178 |
-
ae_model = ae_model.to(device)
|
| 179 |
-
rembg_session = rembg.new_session()
|
| 180 |
|
| 181 |
-
|
| 182 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 183 |
)
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
label="Number of Decoding frames",
|
| 200 |
-
minimum=1,
|
| 201 |
-
maximum=num_frames,
|
| 202 |
-
step=1,
|
| 203 |
-
)
|
| 204 |
-
min_guidance_slider = gr.Slider(
|
| 205 |
-
value=3.5,
|
| 206 |
-
label="Min CFG Value",
|
| 207 |
-
minimum=0.05,
|
| 208 |
-
maximum=0.5,
|
| 209 |
-
step=0.05,
|
| 210 |
-
)
|
| 211 |
-
max_guidance_slider = gr.Slider(
|
| 212 |
-
value=3.5,
|
| 213 |
-
label="Max CFG Value",
|
| 214 |
-
minimum=0.05,
|
| 215 |
-
maximum=0.5,
|
| 216 |
-
step=0.05,
|
| 217 |
-
)
|
| 218 |
-
run_button = gr.Button(value="Run V3D")
|
| 219 |
-
|
| 220 |
-
with gr.Column():
|
| 221 |
-
output_video = gr.Video(value=None, label="Output Orbit Video")
|
| 222 |
-
|
| 223 |
-
@run_button.click(
|
| 224 |
-
inputs=[
|
| 225 |
-
input_image,
|
| 226 |
-
border_ratio_slider,
|
| 227 |
-
min_guidance_slider,
|
| 228 |
-
max_guidance_slider,
|
| 229 |
-
decoding_t_slider,
|
| 230 |
-
],
|
| 231 |
-
outputs=[output_video],
|
| 232 |
)
|
| 233 |
-
def _(image, border_ratio, min_guidance, max_guidance, decoding_t):
|
| 234 |
-
change_model_params(model, min_guidance, max_guidance)
|
| 235 |
-
return do_sample(
|
| 236 |
-
image,
|
| 237 |
-
model,
|
| 238 |
-
clip_model,
|
| 239 |
-
ae_model,
|
| 240 |
-
device,
|
| 241 |
-
num_frames,
|
| 242 |
-
num_steps,
|
| 243 |
-
int(decoding_t),
|
| 244 |
-
border_ratio,
|
| 245 |
-
False,
|
| 246 |
-
rembg_session,
|
| 247 |
-
output_folder,
|
| 248 |
-
)
|
| 249 |
-
|
| 250 |
-
# do_sample(
|
| 251 |
-
# np.asarray(Image.open("assets/baby_yoda.png")),
|
| 252 |
-
# model,
|
| 253 |
-
# clip_model,
|
| 254 |
-
# ae_model,
|
| 255 |
-
# device,
|
| 256 |
-
# num_frames,
|
| 257 |
-
# num_steps,
|
| 258 |
-
# 1,
|
| 259 |
-
# 0.3,
|
| 260 |
-
# False,
|
| 261 |
-
# rembg_session,
|
| 262 |
-
# output_folder,
|
| 263 |
-
# )
|
| 264 |
-
demo.launch(inbrowser=True, inline=False, share=share, show_error=True)
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
if __name__ == "__main__":
|
| 268 |
-
parser = argparse.ArgumentParser()
|
| 269 |
-
parser.add_argument("--device", type=str, default="cuda")
|
| 270 |
-
parser.add_argument("--share", action="store_true")
|
| 271 |
-
|
| 272 |
-
opt = parser.parse_args()
|
| 273 |
-
|
| 274 |
-
test = OmegaConf.load("./scripts/pub/configs/V3D_512.yaml")
|
| 275 |
-
print(test)
|
| 276 |
-
|
| 277 |
-
def download_if_need(path, url):
|
| 278 |
-
if Path(path).exists():
|
| 279 |
-
return
|
| 280 |
-
import wget
|
| 281 |
-
|
| 282 |
-
path = Path(path)
|
| 283 |
-
path.parent.mkdir(parents=True, exist_ok=True)
|
| 284 |
-
wget.download(url, out=str(path))
|
| 285 |
|
| 286 |
-
# download_if_need(
|
| 287 |
-
# "ckpts/svd_xt.safetensors",
|
| 288 |
-
# "https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt/resolve/main/svd_xt.safetensors",
|
| 289 |
-
# )
|
| 290 |
-
# download_if_need(
|
| 291 |
-
# "ckpts/V3D_512.ckpt", "https://huggingface.co/heheyas/V3D/resolve/main/V3D.ckpt"
|
| 292 |
-
# )
|
| 293 |
|
| 294 |
-
|
|
|
|
| 25 |
from mediapy import write_video
|
| 26 |
from pathlib import Path
|
| 27 |
import spaces
|
| 28 |
+
from huggingface_hub import hf_hub_download
|
| 29 |
|
| 30 |
|
| 31 |
@spaces.GPU
|
|
|
|
| 143 |
return video_path
|
| 144 |
|
| 145 |
|
| 146 |
+
@spaces.GPU
|
| 147 |
def change_model_params(model, min_cfg, max_cfg):
|
| 148 |
model.sampler.guider.max_scale = max_cfg
|
| 149 |
model.sampler.guider.min_scale = min_cfg
|
| 150 |
|
| 151 |
|
| 152 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 153 |
|
| 154 |
+
# download
|
| 155 |
+
V3D_ckpt_path = hf_hub_download(repo_id="heheyas/V3D", filename="V3D.ckpt")
|
| 156 |
+
svd_xt_ckpt_path = hf_hub_download(
|
| 157 |
+
repo_id="stabilityai/stable-video-diffusion-img2vid-xt",
|
| 158 |
+
filename="svd_xt.safetensors",
|
| 159 |
+
)
|
|
|
|
|
|
|
|
|
|
| 160 |
|
| 161 |
+
model_config = "./scripts/pub/configs/V3D_512.yaml"
|
| 162 |
+
num_frames = OmegaConf.load(
|
| 163 |
+
model_config
|
| 164 |
+
).model.params.sampler_config.params.guider_config.params.num_frames
|
| 165 |
+
print("Detected num_frames:", num_frames)
|
| 166 |
+
# num_steps = default(num_steps, 25)
|
| 167 |
+
num_steps = 25
|
| 168 |
+
output_folder = "outputs/V3D_512"
|
| 169 |
+
|
| 170 |
+
sd = load_safetensors(svd_xt_ckpt_path)
|
| 171 |
+
clip_model_config = OmegaConf.load("./configs/embedder/clip_image.yaml")
|
| 172 |
+
clip_model = instantiate_from_config(clip_model_config).eval()
|
| 173 |
+
clip_sd = dict()
|
| 174 |
+
for k, v in sd.items():
|
| 175 |
+
if "conditioner.embedders.0" in k:
|
| 176 |
+
clip_sd[k.replace("conditioner.embedders.0.", "")] = v
|
| 177 |
+
clip_model.load_state_dict(clip_sd)
|
| 178 |
+
clip_model = clip_model.to(device)
|
| 179 |
+
|
| 180 |
+
ae_model_config = OmegaConf.load("./configs/ae/video.yaml")
|
| 181 |
+
ae_model = instantiate_from_config(ae_model_config).eval()
|
| 182 |
+
encoder_sd = dict()
|
| 183 |
+
for k, v in sd.items():
|
| 184 |
+
if "first_stage_model" in k:
|
| 185 |
+
encoder_sd[k.replace("first_stage_model.", "")] = v
|
| 186 |
+
ae_model.load_state_dict(encoder_sd)
|
| 187 |
+
ae_model = ae_model.to(device)
|
| 188 |
+
rembg_session = rembg.new_session()
|
| 189 |
+
|
| 190 |
+
model_config.model.params.ckpt_path = V3D_ckpt_path
|
| 191 |
+
model, _ = load_model(
|
| 192 |
+
model_config, device, num_frames, num_steps, min_cfg=3.5, max_cfg=3.5
|
| 193 |
+
)
|
| 194 |
+
model = model.to(device)
|
| 195 |
+
|
| 196 |
+
with gr.Blocks(title="V3D", theme=gr.themes.Monochrome()) as demo:
|
| 197 |
+
with gr.Row(equal_height=True):
|
| 198 |
+
with gr.Column():
|
| 199 |
+
input_image = gr.Image(value=None, label="Input Image")
|
| 200 |
+
|
| 201 |
+
border_ratio_slider = gr.Slider(
|
| 202 |
+
value=0.3,
|
| 203 |
+
label="Border Ratio",
|
| 204 |
+
minimum=0.05,
|
| 205 |
+
maximum=0.5,
|
| 206 |
+
step=0.05,
|
| 207 |
+
)
|
| 208 |
+
decoding_t_slider = gr.Slider(
|
| 209 |
+
value=1,
|
| 210 |
+
label="Number of Decoding frames",
|
| 211 |
+
minimum=1,
|
| 212 |
+
maximum=num_frames,
|
| 213 |
+
step=1,
|
| 214 |
+
)
|
| 215 |
+
min_guidance_slider = gr.Slider(
|
| 216 |
+
value=3.5,
|
| 217 |
+
label="Min CFG Value",
|
| 218 |
+
minimum=0.05,
|
| 219 |
+
maximum=0.5,
|
| 220 |
+
step=0.05,
|
| 221 |
+
)
|
| 222 |
+
max_guidance_slider = gr.Slider(
|
| 223 |
+
value=3.5,
|
| 224 |
+
label="Max CFG Value",
|
| 225 |
+
minimum=0.05,
|
| 226 |
+
maximum=0.5,
|
| 227 |
+
step=0.05,
|
| 228 |
+
)
|
| 229 |
+
run_button = gr.Button(value="Run V3D")
|
| 230 |
+
|
| 231 |
+
with gr.Column():
|
| 232 |
+
output_video = gr.Video(value=None, label="Output Orbit Video")
|
| 233 |
+
|
| 234 |
+
@run_button.click(
|
| 235 |
+
inputs=[
|
| 236 |
+
input_image,
|
| 237 |
+
border_ratio_slider,
|
| 238 |
+
min_guidance_slider,
|
| 239 |
+
max_guidance_slider,
|
| 240 |
+
decoding_t_slider,
|
| 241 |
+
],
|
| 242 |
+
outputs=[output_video],
|
| 243 |
)
|
| 244 |
+
def _(image, border_ratio, min_guidance, max_guidance, decoding_t):
|
| 245 |
+
change_model_params(model, min_guidance, max_guidance)
|
| 246 |
+
return do_sample(
|
| 247 |
+
image,
|
| 248 |
+
model,
|
| 249 |
+
clip_model,
|
| 250 |
+
ae_model,
|
| 251 |
+
device,
|
| 252 |
+
num_frames,
|
| 253 |
+
num_steps,
|
| 254 |
+
int(decoding_t),
|
| 255 |
+
border_ratio,
|
| 256 |
+
False,
|
| 257 |
+
rembg_session,
|
| 258 |
+
output_folder,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 259 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 260 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 261 |
|
| 262 |
+
demo.launch()
|
app_bkp.py
ADDED
|
@@ -0,0 +1,294 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# TODO
|
| 2 |
+
import numpy as np
|
| 3 |
+
import argparse
|
| 4 |
+
import torch
|
| 5 |
+
from torchvision.utils import make_grid
|
| 6 |
+
import tempfile
|
| 7 |
+
import gradio as gr
|
| 8 |
+
from omegaconf import OmegaConf
|
| 9 |
+
from einops import rearrange
|
| 10 |
+
from scripts.pub.V3D_512 import (
|
| 11 |
+
sample_one,
|
| 12 |
+
get_batch,
|
| 13 |
+
get_unique_embedder_keys_from_conditioner,
|
| 14 |
+
load_model,
|
| 15 |
+
)
|
| 16 |
+
from sgm.util import default, instantiate_from_config
|
| 17 |
+
from safetensors.torch import load_file as load_safetensors
|
| 18 |
+
from PIL import Image
|
| 19 |
+
from kiui.op import recenter
|
| 20 |
+
from torchvision.transforms import ToTensor
|
| 21 |
+
from einops import rearrange, repeat
|
| 22 |
+
import rembg
|
| 23 |
+
import os
|
| 24 |
+
from glob import glob
|
| 25 |
+
from mediapy import write_video
|
| 26 |
+
from pathlib import Path
|
| 27 |
+
import spaces
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
@spaces.GPU
|
| 31 |
+
def do_sample(
|
| 32 |
+
image,
|
| 33 |
+
model,
|
| 34 |
+
clip_model,
|
| 35 |
+
ae_model,
|
| 36 |
+
device,
|
| 37 |
+
num_frames,
|
| 38 |
+
num_steps,
|
| 39 |
+
decoding_t,
|
| 40 |
+
border_ratio,
|
| 41 |
+
ignore_alpha,
|
| 42 |
+
rembg_session,
|
| 43 |
+
output_folder,
|
| 44 |
+
):
|
| 45 |
+
# if image.mode == "RGBA":
|
| 46 |
+
# image = image.convert("RGB")
|
| 47 |
+
image = Image.fromarray(image)
|
| 48 |
+
w, h = image.size
|
| 49 |
+
|
| 50 |
+
if border_ratio > 0:
|
| 51 |
+
if image.mode != "RGBA" or ignore_alpha:
|
| 52 |
+
image = image.convert("RGB")
|
| 53 |
+
image = np.asarray(image)
|
| 54 |
+
carved_image = rembg.remove(image, session=rembg_session) # [H, W, 4]
|
| 55 |
+
else:
|
| 56 |
+
image = np.asarray(image)
|
| 57 |
+
carved_image = image
|
| 58 |
+
mask = carved_image[..., -1] > 0
|
| 59 |
+
image = recenter(carved_image, mask, border_ratio=border_ratio)
|
| 60 |
+
image = image.astype(np.float32) / 255.0
|
| 61 |
+
if image.shape[-1] == 4:
|
| 62 |
+
image = image[..., :3] * image[..., 3:4] + (1 - image[..., 3:4])
|
| 63 |
+
image = Image.fromarray((image * 255).astype(np.uint8))
|
| 64 |
+
else:
|
| 65 |
+
print("Ignore border ratio")
|
| 66 |
+
image = image.resize((512, 512))
|
| 67 |
+
|
| 68 |
+
image = ToTensor()(image)
|
| 69 |
+
image = image * 2.0 - 1.0
|
| 70 |
+
|
| 71 |
+
image = image.unsqueeze(0).to(device)
|
| 72 |
+
H, W = image.shape[2:]
|
| 73 |
+
assert image.shape[1] == 3
|
| 74 |
+
F = 8
|
| 75 |
+
C = 4
|
| 76 |
+
shape = (num_frames, C, H // F, W // F)
|
| 77 |
+
|
| 78 |
+
value_dict = {}
|
| 79 |
+
value_dict["motion_bucket_id"] = 0
|
| 80 |
+
value_dict["fps_id"] = 0
|
| 81 |
+
value_dict["cond_aug"] = 0.05
|
| 82 |
+
value_dict["cond_frames_without_noise"] = clip_model(image)
|
| 83 |
+
value_dict["cond_frames"] = ae_model.encode(image)
|
| 84 |
+
value_dict["cond_frames"] += 0.05 * torch.randn_like(value_dict["cond_frames"])
|
| 85 |
+
value_dict["cond_aug"] = 0.05
|
| 86 |
+
|
| 87 |
+
with torch.no_grad():
|
| 88 |
+
with torch.autocast(device):
|
| 89 |
+
batch, batch_uc = get_batch(
|
| 90 |
+
get_unique_embedder_keys_from_conditioner(model.conditioner),
|
| 91 |
+
value_dict,
|
| 92 |
+
[1, num_frames],
|
| 93 |
+
T=num_frames,
|
| 94 |
+
device=device,
|
| 95 |
+
)
|
| 96 |
+
c, uc = model.conditioner.get_unconditional_conditioning(
|
| 97 |
+
batch,
|
| 98 |
+
batch_uc=batch_uc,
|
| 99 |
+
force_uc_zero_embeddings=[
|
| 100 |
+
"cond_frames",
|
| 101 |
+
"cond_frames_without_noise",
|
| 102 |
+
],
|
| 103 |
+
)
|
| 104 |
+
|
| 105 |
+
for k in ["crossattn", "concat"]:
|
| 106 |
+
uc[k] = repeat(uc[k], "b ... -> b t ...", t=num_frames)
|
| 107 |
+
uc[k] = rearrange(uc[k], "b t ... -> (b t) ...", t=num_frames)
|
| 108 |
+
c[k] = repeat(c[k], "b ... -> b t ...", t=num_frames)
|
| 109 |
+
c[k] = rearrange(c[k], "b t ... -> (b t) ...", t=num_frames)
|
| 110 |
+
|
| 111 |
+
randn = torch.randn(shape, device=device)
|
| 112 |
+
randn = randn.to(device)
|
| 113 |
+
|
| 114 |
+
additional_model_inputs = {}
|
| 115 |
+
additional_model_inputs["image_only_indicator"] = torch.zeros(
|
| 116 |
+
2, num_frames
|
| 117 |
+
).to(device)
|
| 118 |
+
additional_model_inputs["num_video_frames"] = batch["num_video_frames"]
|
| 119 |
+
|
| 120 |
+
def denoiser(input, sigma, c):
|
| 121 |
+
return model.denoiser(
|
| 122 |
+
model.model, input, sigma, c, **additional_model_inputs
|
| 123 |
+
)
|
| 124 |
+
|
| 125 |
+
samples_z = model.sampler(denoiser, randn, cond=c, uc=uc)
|
| 126 |
+
model.en_and_decode_n_samples_a_time = decoding_t
|
| 127 |
+
samples_x = model.decode_first_stage(samples_z)
|
| 128 |
+
samples = torch.clamp((samples_x + 1.0) / 2.0, min=0.0, max=1.0)
|
| 129 |
+
|
| 130 |
+
os.makedirs(output_folder, exist_ok=True)
|
| 131 |
+
base_count = len(glob(os.path.join(output_folder, "*.mp4")))
|
| 132 |
+
video_path = os.path.join(output_folder, f"{base_count:06d}.mp4")
|
| 133 |
+
|
| 134 |
+
frames = (
|
| 135 |
+
(rearrange(samples, "t c h w -> t h w c") * 255)
|
| 136 |
+
.cpu()
|
| 137 |
+
.numpy()
|
| 138 |
+
.astype(np.uint8)
|
| 139 |
+
)
|
| 140 |
+
write_video(video_path, frames, fps=6)
|
| 141 |
+
|
| 142 |
+
return video_path
|
| 143 |
+
|
| 144 |
+
|
| 145 |
+
def change_model_params(model, min_cfg, max_cfg):
|
| 146 |
+
model.sampler.guider.max_scale = max_cfg
|
| 147 |
+
model.sampler.guider.min_scale = min_cfg
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
@spaces.GPU
|
| 151 |
+
def launch(device="cuda", share=False):
|
| 152 |
+
model_config = "./scripts/pub/configs/V3D_512.yaml"
|
| 153 |
+
num_frames = OmegaConf.load(
|
| 154 |
+
model_config
|
| 155 |
+
).model.params.sampler_config.params.guider_config.params.num_frames
|
| 156 |
+
print("Detected num_frames:", num_frames)
|
| 157 |
+
# num_steps = default(num_steps, 25)
|
| 158 |
+
num_steps = 25
|
| 159 |
+
output_folder = "outputs/V3D_512"
|
| 160 |
+
|
| 161 |
+
sd = load_safetensors("./ckpts/svd_xt.safetensors")
|
| 162 |
+
clip_model_config = OmegaConf.load("./configs/embedder/clip_image.yaml")
|
| 163 |
+
clip_model = instantiate_from_config(clip_model_config).eval()
|
| 164 |
+
clip_sd = dict()
|
| 165 |
+
for k, v in sd.items():
|
| 166 |
+
if "conditioner.embedders.0" in k:
|
| 167 |
+
clip_sd[k.replace("conditioner.embedders.0.", "")] = v
|
| 168 |
+
clip_model.load_state_dict(clip_sd)
|
| 169 |
+
clip_model = clip_model.to(device)
|
| 170 |
+
|
| 171 |
+
ae_model_config = OmegaConf.load("./configs/ae/video.yaml")
|
| 172 |
+
ae_model = instantiate_from_config(ae_model_config).eval()
|
| 173 |
+
encoder_sd = dict()
|
| 174 |
+
for k, v in sd.items():
|
| 175 |
+
if "first_stage_model" in k:
|
| 176 |
+
encoder_sd[k.replace("first_stage_model.", "")] = v
|
| 177 |
+
ae_model.load_state_dict(encoder_sd)
|
| 178 |
+
ae_model = ae_model.to(device)
|
| 179 |
+
rembg_session = rembg.new_session()
|
| 180 |
+
|
| 181 |
+
model, _ = load_model(
|
| 182 |
+
model_config, device, num_frames, num_steps, min_cfg=3.5, max_cfg=3.5
|
| 183 |
+
)
|
| 184 |
+
|
| 185 |
+
with gr.Blocks(title="V3D", theme=gr.themes.Monochrome()) as demo:
|
| 186 |
+
with gr.Row(equal_height=True):
|
| 187 |
+
with gr.Column():
|
| 188 |
+
input_image = gr.Image(value=None, label="Input Image")
|
| 189 |
+
|
| 190 |
+
border_ratio_slider = gr.Slider(
|
| 191 |
+
value=0.3,
|
| 192 |
+
label="Border Ratio",
|
| 193 |
+
minimum=0.05,
|
| 194 |
+
maximum=0.5,
|
| 195 |
+
step=0.05,
|
| 196 |
+
)
|
| 197 |
+
decoding_t_slider = gr.Slider(
|
| 198 |
+
value=1,
|
| 199 |
+
label="Number of Decoding frames",
|
| 200 |
+
minimum=1,
|
| 201 |
+
maximum=num_frames,
|
| 202 |
+
step=1,
|
| 203 |
+
)
|
| 204 |
+
min_guidance_slider = gr.Slider(
|
| 205 |
+
value=3.5,
|
| 206 |
+
label="Min CFG Value",
|
| 207 |
+
minimum=0.05,
|
| 208 |
+
maximum=0.5,
|
| 209 |
+
step=0.05,
|
| 210 |
+
)
|
| 211 |
+
max_guidance_slider = gr.Slider(
|
| 212 |
+
value=3.5,
|
| 213 |
+
label="Max CFG Value",
|
| 214 |
+
minimum=0.05,
|
| 215 |
+
maximum=0.5,
|
| 216 |
+
step=0.05,
|
| 217 |
+
)
|
| 218 |
+
run_button = gr.Button(value="Run V3D")
|
| 219 |
+
|
| 220 |
+
with gr.Column():
|
| 221 |
+
output_video = gr.Video(value=None, label="Output Orbit Video")
|
| 222 |
+
|
| 223 |
+
@run_button.click(
|
| 224 |
+
inputs=[
|
| 225 |
+
input_image,
|
| 226 |
+
border_ratio_slider,
|
| 227 |
+
min_guidance_slider,
|
| 228 |
+
max_guidance_slider,
|
| 229 |
+
decoding_t_slider,
|
| 230 |
+
],
|
| 231 |
+
outputs=[output_video],
|
| 232 |
+
)
|
| 233 |
+
def _(image, border_ratio, min_guidance, max_guidance, decoding_t):
|
| 234 |
+
change_model_params(model, min_guidance, max_guidance)
|
| 235 |
+
return do_sample(
|
| 236 |
+
image,
|
| 237 |
+
model,
|
| 238 |
+
clip_model,
|
| 239 |
+
ae_model,
|
| 240 |
+
device,
|
| 241 |
+
num_frames,
|
| 242 |
+
num_steps,
|
| 243 |
+
int(decoding_t),
|
| 244 |
+
border_ratio,
|
| 245 |
+
False,
|
| 246 |
+
rembg_session,
|
| 247 |
+
output_folder,
|
| 248 |
+
)
|
| 249 |
+
|
| 250 |
+
# do_sample(
|
| 251 |
+
# np.asarray(Image.open("assets/baby_yoda.png")),
|
| 252 |
+
# model,
|
| 253 |
+
# clip_model,
|
| 254 |
+
# ae_model,
|
| 255 |
+
# device,
|
| 256 |
+
# num_frames,
|
| 257 |
+
# num_steps,
|
| 258 |
+
# 1,
|
| 259 |
+
# 0.3,
|
| 260 |
+
# False,
|
| 261 |
+
# rembg_session,
|
| 262 |
+
# output_folder,
|
| 263 |
+
# )
|
| 264 |
+
demo.launch(inbrowser=True, inline=False, share=share, show_error=True)
|
| 265 |
+
|
| 266 |
+
|
| 267 |
+
if __name__ == "__main__":
|
| 268 |
+
parser = argparse.ArgumentParser()
|
| 269 |
+
parser.add_argument("--device", type=str, default="cuda")
|
| 270 |
+
parser.add_argument("--share", action="store_true")
|
| 271 |
+
|
| 272 |
+
opt = parser.parse_args()
|
| 273 |
+
|
| 274 |
+
test = OmegaConf.load("./scripts/pub/configs/V3D_512.yaml")
|
| 275 |
+
print(test)
|
| 276 |
+
|
| 277 |
+
def download_if_need(path, url):
|
| 278 |
+
if Path(path).exists():
|
| 279 |
+
return
|
| 280 |
+
import wget
|
| 281 |
+
|
| 282 |
+
path = Path(path)
|
| 283 |
+
path.parent.mkdir(parents=True, exist_ok=True)
|
| 284 |
+
wget.download(url, out=str(path))
|
| 285 |
+
|
| 286 |
+
# download_if_need(
|
| 287 |
+
# "ckpts/svd_xt.safetensors",
|
| 288 |
+
# "https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt/resolve/main/svd_xt.safetensors",
|
| 289 |
+
# )
|
| 290 |
+
# download_if_need(
|
| 291 |
+
# "ckpts/V3D_512.ckpt", "https://huggingface.co/heheyas/V3D/resolve/main/V3D.ckpt"
|
| 292 |
+
# )
|
| 293 |
+
|
| 294 |
+
launch(opt.device, opt.share)
|