Spaces:
Runtime error
Runtime error
πwπ
Browse files- app.py +29 -16
- cool kid.jpg +0 -0
app.py
CHANGED
|
@@ -6,26 +6,30 @@ from transformers import AutoModelForImageSegmentation
|
|
| 6 |
import torch
|
| 7 |
from torchvision import transforms
|
| 8 |
from PIL import Image
|
| 9 |
-
torch.set_float32_matmul_precision(['high', 'highest'][0])
|
| 10 |
|
| 11 |
-
|
| 12 |
-
birefnet.to("cuda")
|
| 13 |
-
transform_image = transforms.Compose([
|
| 14 |
-
transforms.Resize((1024, 1024)),
|
| 15 |
-
transforms.ToTensor(),
|
| 16 |
-
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
| 17 |
-
])
|
| 18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
|
| 21 |
@spaces.GPU
|
| 22 |
def fn(image):
|
| 23 |
-
im = load_img(image,output_type="pil")
|
| 24 |
-
im = im.convert(
|
| 25 |
image_size = im.size
|
| 26 |
origin = im.copy()
|
| 27 |
image = load_img(im)
|
| 28 |
-
input_images = transform_image(image).unsqueeze(0).to(
|
| 29 |
# Prediction
|
| 30 |
with torch.no_grad():
|
| 31 |
preds = birefnet(input_images)[-1].sigmoid().cpu()
|
|
@@ -33,7 +37,8 @@ def fn(image):
|
|
| 33 |
pred_pil = transforms.ToPILImage()(pred)
|
| 34 |
mask = pred_pil.resize(image_size)
|
| 35 |
image.putalpha(mask)
|
| 36 |
-
return (image
|
|
|
|
| 37 |
|
| 38 |
slider1 = ImageSlider(label="birefnet", type="pil")
|
| 39 |
slider2 = ImageSlider(label="birefnet", type="pil")
|
|
@@ -41,11 +46,19 @@ image = gr.Image(label="Upload an image")
|
|
| 41 |
text = gr.Textbox(label="Paste an image URL")
|
| 42 |
|
| 43 |
chameleon = Image.open("chameleon.jpg")
|
|
|
|
|
|
|
| 44 |
url = "https://hips.hearstapps.com/hmg-prod/images/gettyimages-1229892983-square.jpg"
|
| 45 |
-
tab1 = gr.Interface(
|
| 46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
|
| 48 |
-
demo = gr.TabbedInterface(
|
|
|
|
|
|
|
| 49 |
|
| 50 |
if __name__ == "__main__":
|
| 51 |
-
demo.launch()
|
|
|
|
| 6 |
import torch
|
| 7 |
from torchvision import transforms
|
| 8 |
from PIL import Image
|
|
|
|
| 9 |
|
| 10 |
+
torch.set_float32_matmul_precision(["high", "highest"][0])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
+
birefnet = AutoModelForImageSegmentation.from_pretrained(
|
| 13 |
+
"ZhengPeng7/BiRefNet", trust_remote_code=True
|
| 14 |
+
)
|
| 15 |
+
birefnet.to("cuda")
|
| 16 |
+
transform_image = transforms.Compose(
|
| 17 |
+
[
|
| 18 |
+
transforms.Resize((1024, 1024)),
|
| 19 |
+
transforms.ToTensor(),
|
| 20 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
| 21 |
+
]
|
| 22 |
+
)
|
| 23 |
|
| 24 |
|
| 25 |
@spaces.GPU
|
| 26 |
def fn(image):
|
| 27 |
+
im = load_img(image, output_type="pil")
|
| 28 |
+
im = im.convert("RGB")
|
| 29 |
image_size = im.size
|
| 30 |
origin = im.copy()
|
| 31 |
image = load_img(im)
|
| 32 |
+
input_images = transform_image(image).unsqueeze(0).to("cuda")
|
| 33 |
# Prediction
|
| 34 |
with torch.no_grad():
|
| 35 |
preds = birefnet(input_images)[-1].sigmoid().cpu()
|
|
|
|
| 37 |
pred_pil = transforms.ToPILImage()(pred)
|
| 38 |
mask = pred_pil.resize(image_size)
|
| 39 |
image.putalpha(mask)
|
| 40 |
+
return (image, origin)
|
| 41 |
+
|
| 42 |
|
| 43 |
slider1 = ImageSlider(label="birefnet", type="pil")
|
| 44 |
slider2 = ImageSlider(label="birefnet", type="pil")
|
|
|
|
| 46 |
text = gr.Textbox(label="Paste an image URL")
|
| 47 |
|
| 48 |
chameleon = Image.open("chameleon.jpg")
|
| 49 |
+
cool = Image.open("cool kid.jpg")
|
| 50 |
+
|
| 51 |
url = "https://hips.hearstapps.com/hmg-prod/images/gettyimages-1229892983-square.jpg"
|
| 52 |
+
tab1 = gr.Interface(
|
| 53 |
+
fn, inputs=image, outputs=slider1, examples=[[chameleon], [cool]], api_name="image"
|
| 54 |
+
)
|
| 55 |
+
|
| 56 |
+
tab2 = gr.Interface(fn, inputs=text, outputs=slider2, examples=[url], api_name="text")
|
| 57 |
+
|
| 58 |
|
| 59 |
+
demo = gr.TabbedInterface(
|
| 60 |
+
[tab1, tab2], ["image", "text"], title="birefnet for background removal"
|
| 61 |
+
)
|
| 62 |
|
| 63 |
if __name__ == "__main__":
|
| 64 |
+
demo.launch()
|
cool kid.jpg
ADDED
|