Spaces:
Sleeping
Sleeping
雷娃
commited on
Commit
·
7de1f3b
1
Parent(s):
a68acd5
add local load models
Browse files- app.py +29 -14
- requirements.txt +5 -0
app.py
CHANGED
|
@@ -1,7 +1,21 @@
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
| 2 |
from huggingface_hub import InferenceClient
|
| 3 |
|
| 4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
def respond(
|
| 6 |
message,
|
| 7 |
history: list[dict[str, str]],
|
|
@@ -22,22 +36,23 @@ def respond(
|
|
| 22 |
|
| 23 |
messages.append({"role": "user", "content": message})
|
| 24 |
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
for message in client.chat_completion(
|
| 28 |
messages,
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
|
|
|
|
|
|
|
|
|
| 38 |
|
| 39 |
-
|
| 40 |
-
|
| 41 |
|
| 42 |
|
| 43 |
"""
|
|
|
|
| 1 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
|
| 2 |
+
from threading import Thread
|
| 3 |
import gradio as gr
|
| 4 |
+
import re
|
| 5 |
+
import torch
|
| 6 |
from huggingface_hub import InferenceClient
|
| 7 |
|
| 8 |
|
| 9 |
+
# load model and tokenizer
|
| 10 |
+
model_name = "inclusionAI/Ling-mini-2.0"
|
| 11 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 12 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 13 |
+
model_name,
|
| 14 |
+
torch_dtype="auto",
|
| 15 |
+
device_map="auto",
|
| 16 |
+
trust_remote_code=True
|
| 17 |
+
).eval()
|
| 18 |
+
|
| 19 |
def respond(
|
| 20 |
message,
|
| 21 |
history: list[dict[str, str]],
|
|
|
|
| 36 |
|
| 37 |
messages.append({"role": "user", "content": message})
|
| 38 |
|
| 39 |
+
text = tokenizer.apply_chat_template(
|
|
|
|
|
|
|
| 40 |
messages,
|
| 41 |
+
tokenize=False,
|
| 42 |
+
add_generation_prompt=True
|
| 43 |
+
)
|
| 44 |
+
model_inputs = tokenizer([text], return_tensors="pt", return_token_type_ids=False).to(model.device)
|
| 45 |
+
|
| 46 |
+
generated_ids = model.generate(
|
| 47 |
+
**model_inputs,
|
| 48 |
+
max_new_tokens=512
|
| 49 |
+
)
|
| 50 |
+
generated_ids = [
|
| 51 |
+
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
| 52 |
+
]
|
| 53 |
|
| 54 |
+
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
| 55 |
+
yield response
|
| 56 |
|
| 57 |
|
| 58 |
"""
|
requirements.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio
|
| 2 |
+
transformers
|
| 3 |
+
torch
|
| 4 |
+
accelerate
|
| 5 |
+
openai
|