Spaces:
Configuration error
Configuration error
| Setting up Training Environment... | |
| Creating Liquid PPO Agent... | |
| Using cpu device | |
| Wrapping the env with a `Monitor` wrapper | |
| Wrapping the env in a DummyVecEnv. | |
| Starting Training (This may take a while)... | |
| ---------------------------------- | |
| | rollout/ | | | |
| | ep_len_mean | 1e+03 | | |
| | ep_rew_mean | -2.56e+04 | | |
| | time/ | | | |
| | fps | 608 | | |
| | iterations | 1 | | |
| | time_elapsed | 3 | | |
| | total_timesteps | 2048 | | |
| ---------------------------------- | |
| ------------------------------------------ | |
| | rollout/ | | | |
| | ep_len_mean | 1e+03 | | |
| | ep_rew_mean | -2.23e+04 | | |
| | time/ | | | |
| | fps | 177 | | |
| | iterations | 2 | | |
| | time_elapsed | 23 | | |
| | total_timesteps | 4096 | | |
| | train/ | | | |
| | approx_kl | 0.0049500195 | | |
| | clip_fraction | 0.0341 | | |
| | clip_range | 0.2 | | |
| | entropy_loss | -5.67 | | |
| | explained_variance | -9.31e-05 | | |
| | learning_rate | 0.0003 | | |
| | loss | 1.15e+05 | | |
| | n_updates | 10 | | |
| | policy_gradient_loss | -0.00313 | | |
| | std | 0.999 | | |
| | value_loss | 1.99e+05 | | |
| ------------------------------------------ | |
| ----------------------------------------- | |
| | rollout/ | | | |
| | ep_len_mean | 1e+03 | | |
| | ep_rew_mean | -2.19e+04 | | |
| | time/ | | | |
| | fps | 129 | | |
| | iterations | 3 | | |
| | time_elapsed | 47 | | |
| | total_timesteps | 6144 | | |
| | train/ | | | |
| | approx_kl | 0.002073763 | | |
| | clip_fraction | 0.00542 | | |
| | clip_range | 0.2 | | |
| | entropy_loss | -5.67 | | |
| | explained_variance | 2.62e-05 | | |
| | learning_rate | 0.0003 | | |
| | loss | 5.71e+04 | | |
| | n_updates | 20 | | |
| | policy_gradient_loss | -0.000381 | | |
| | std | 0.996 | | |
| | value_loss | 1.15e+05 | | |
| ----------------------------------------- | |
| ------------------------------------------ | |
| | rollout/ | | | |
| | ep_len_mean | 1e+03 | | |
| | ep_rew_mean | -2.28e+04 | | |
| | time/ | | | |
| | fps | 116 | | |
| | iterations | 4 | | |
| | time_elapsed | 70 | | |
| | total_timesteps | 8192 | | |
| | train/ | | | |
| | approx_kl | 0.0047560623 | | |
| | clip_fraction | 0.0275 | | |
| | clip_range | 0.2 | | |
| | entropy_loss | -5.64 | | |
| | explained_variance | 8.34e-07 | | |
| | learning_rate | 0.0003 | | |
| | loss | 7.31e+04 | | |
| | n_updates | 30 | | |
| | policy_gradient_loss | -0.00268 | | |
| | std | 0.988 | | |
| | value_loss | 1.42e+05 | | |
| ------------------------------------------ | |
| ----------------------------------------- | |
| | rollout/ | | | |
| | ep_len_mean | 1e+03 | | |
| | ep_rew_mean | -2.4e+04 | | |
| | time/ | | | |
| | fps | 93 | | |
| | iterations | 5 | | |
| | time_elapsed | 109 | | |
| | total_timesteps | 10240 | | |
| | train/ | | | |
| | approx_kl | 0.004183922 | | |
| | clip_fraction | 0.0234 | | |
| | clip_range | 0.2 | | |
| | entropy_loss | -5.62 | | |
| | explained_variance | -4.77e-07 | | |
| | learning_rate | 0.0003 | | |
| | loss | 1.35e+05 | | |
| | n_updates | 40 | | |
| | policy_gradient_loss | -0.003 | | |
| | std | 0.985 | | |
| | value_loss | 2.21e+05 | | |
| ----------------------------------------- | |
| ----------------------------------------- | |
| | rollout/ | | | |
| | ep_len_mean | 1e+03 | | |
| | ep_rew_mean | -2.28e+04 | | |
| | time/ | | | |
| | fps | 98 | | |
| | iterations | 6 | | |
| | time_elapsed | 125 | | |
| | total_timesteps | 12288 | | |
| | train/ | | | |
| | approx_kl | 0.005293761 | | |
| | clip_fraction | 0.0418 | | |
| | clip_range | 0.2 | | |
| | entropy_loss | -5.61 | | |
| | explained_variance | -3.58e-07 | | |
| | learning_rate | 0.0003 | | |
| | loss | 1.32e+05 | | |
| | n_updates | 50 | | |
| | policy_gradient_loss | -0.00347 | | |
| | std | 0.985 | | |
| | value_loss | 2.86e+05 | | |
| ----------------------------------------- | |
| ------------------------------------------ | |
| | rollout/ | | | |
| | ep_len_mean | 1e+03 | | |
| | ep_rew_mean | -2.41e+04 | | |
| | time/ | | | |
| | fps | 97 | | |
| | iterations | 7 | | |
| | time_elapsed | 146 | | |
| | total_timesteps | 14336 | | |
| | train/ | | | |
| | approx_kl | 0.0050999783 | | |
| | clip_fraction | 0.0295 | | |
| | clip_range | 0.2 | | |
| | entropy_loss | -5.59 | | |
| | explained_variance | -7.15e-07 | | |
| | learning_rate | 0.0003 | | |
| | loss | 4.66e+04 | | |
| | n_updates | 60 | | |
| | policy_gradient_loss | -0.00355 | | |
| | std | 0.974 | | |
| | value_loss | 8.14e+04 | | |
| ------------------------------------------ | |
| ------------------------------------------ | |
| | rollout/ | | | |
| | ep_len_mean | 1e+03 | | |
| | ep_rew_mean | -2.6e+04 | | |
| | time/ | | | |
| | fps | 103 | | |
| | iterations | 8 | | |
| | time_elapsed | 158 | | |
| | total_timesteps | 16384 | | |
| | train/ | | | |
| | approx_kl | 0.0042739166 | | |
| | clip_fraction | 0.0147 | | |
| | clip_range | 0.2 | | |
| | entropy_loss | -5.57 | | |
| | explained_variance | 0 | | |
| | learning_rate | 0.0003 | | |
| | loss | 1.64e+05 | | |
| | n_updates | 70 | | |
| | policy_gradient_loss | -0.0019 | | |
| | std | 0.972 | | |
| | value_loss | 3.31e+05 | | |
| ------------------------------------------ | |
| ------------------------------------------ | |
| | rollout/ | | | |
| | ep_len_mean | 1e+03 | | |
| | ep_rew_mean | -2.7e+04 | | |
| | time/ | | | |
| | fps | 108 | | |
| | iterations | 9 | | |
| | time_elapsed | 170 | | |
| | total_timesteps | 18432 | | |
| | train/ | | | |
| | approx_kl | 0.0053871158 | | |
| | clip_fraction | 0.0297 | | |
| | clip_range | 0.2 | | |
| | entropy_loss | -5.56 | | |
| | explained_variance | 0 | | |
| | learning_rate | 0.0003 | | |
| | loss | 2.43e+05 | | |
| | n_updates | 80 | | |
| | policy_gradient_loss | -0.00304 | | |
| | std | 0.972 | | |
| | value_loss | 5.33e+05 | | |
| ------------------------------------------ | |
| ------------------------------------------ | |
| | rollout/ | | | |
| | ep_len_mean | 1e+03 | | |
| | ep_rew_mean | -2.81e+04 | | |
| | time/ | | | |
| | fps | 112 | | |
| | iterations | 10 | | |
| | time_elapsed | 181 | | |
| | total_timesteps | 20480 | | |
| | train/ | | | |
| | approx_kl | 0.0035741455 | | |
| | clip_fraction | 0.0138 | | |
| | clip_range | 0.2 | | |
| | entropy_loss | -5.56 | | |
| | explained_variance | -1.19e-07 | | |
| | learning_rate | 0.0003 | | |
| | loss | 1.74e+05 | | |
| | n_updates | 90 | | |
| | policy_gradient_loss | -0.00138 | | |
| | std | 0.971 | | |
| | value_loss | 3.49e+05 | | |
| ------------------------------------------ | |
| ----------------------------------------- | |
| | rollout/ | | | |
| | ep_len_mean | 1e+03 | | |
| | ep_rew_mean | -2.79e+04 | | |
| | time/ | | | |
| | fps | 116 | | |
| | iterations | 11 | | |
| | time_elapsed | 193 | | |
| | total_timesteps | 22528 | | |
| | train/ | | | |
| | approx_kl | 0.004108442 | | |
| | clip_fraction | 0.0245 | | |
| | clip_range | 0.2 | | |
| | entropy_loss | -5.56 | | |
| | explained_variance | 0 | | |
| | learning_rate | 0.0003 | | |
| | loss | 2.53e+05 | | |
| | n_updates | 100 | | |
| | policy_gradient_loss | -0.00274 | | |
| | std | 0.971 | | |
| | value_loss | 5.84e+05 | | |
| ----------------------------------------- | |
| ------------------------------------------ | |
| | rollout/ | | | |
| | ep_len_mean | 1e+03 | | |
| | ep_rew_mean | -2.84e+04 | | |
| | time/ | | | |
| | fps | 119 | | |
| | iterations | 12 | | |
| | time_elapsed | 205 | | |
| | total_timesteps | 24576 | | |
| | train/ | | | |
| | approx_kl | 0.0057261223 | | |
| | clip_fraction | 0.0375 | | |
| | clip_range | 0.2 | | |
| | entropy_loss | -5.53 | | |
| | explained_variance | -1.19e-07 | | |
| | learning_rate | 0.0003 | | |
| | loss | 8.12e+04 | | |
| | n_updates | 110 | | |
| | policy_gradient_loss | -0.003 | | |
| | std | 0.96 | | |
| | value_loss | 1.72e+05 | | |
| ------------------------------------------ | |
| ------------------------------------------ | |
| | rollout/ | | | |
| | ep_len_mean | 1e+03 | | |
| | ep_rew_mean | -2.82e+04 | | |
| | time/ | | | |
| | fps | 122 | | |
| | iterations | 13 | | |
| | time_elapsed | 217 | | |
| | total_timesteps | 26624 | | |
| | train/ | | | |
| | approx_kl | 0.0051155365 | | |
| | clip_fraction | 0.0225 | | |
| | clip_range | 0.2 | | |
| | entropy_loss | -5.5 | | |
| | explained_variance | 0 | | |
| | learning_rate | 0.0003 | | |
| | loss | 2.4e+05 | | |
| | n_updates | 120 | | |
| | policy_gradient_loss | -0.00331 | | |
| | std | 0.955 | | |
| | value_loss | 4.7e+05 | | |
| ------------------------------------------ | |
| ----------------------------------------- | |
| | rollout/ | | | |
| | ep_len_mean | 1e+03 | | |
| | ep_rew_mean | -2.83e+04 | | |
| | time/ | | | |
| | fps | 125 | | |
| | iterations | 14 | | |
| | time_elapsed | 228 | | |
| | total_timesteps | 28672 | | |
| | train/ | | | |
| | approx_kl | 0.005322621 | | |
| | clip_fraction | 0.042 | | |
| | clip_range | 0.2 | | |
| | entropy_loss | -5.48 | | |
| | explained_variance | 0 | | |
| | learning_rate | 0.0003 | | |
| | loss | 1.33e+05 | | |
| | n_updates | 130 | | |
| | policy_gradient_loss | -0.00404 | | |
| | std | 0.952 | | |
| | value_loss | 2.58e+05 | | |
| ----------------------------------------- | |
| ----------------------------------------- | |
| | rollout/ | | | |
| | ep_len_mean | 1e+03 | | |
| | ep_rew_mean | -2.78e+04 | | |
| | time/ | | | |
| | fps | 127 | | |
| | iterations | 15 | | |
| | time_elapsed | 240 | | |
| | total_timesteps | 30720 | | |
| | train/ | | | |
| | approx_kl | 0.006120109 | | |
| | clip_fraction | 0.0588 | | |
| | clip_range | 0.2 | | |
| | entropy_loss | -5.46 | | |
| | explained_variance | 0 | | |
| | learning_rate | 0.0003 | | |
| | loss | 1.32e+05 | | |
| | n_updates | 140 | | |
| | policy_gradient_loss | -0.00445 | | |
| | std | 0.942 | | |
| | value_loss | 2.73e+05 | | |
| ----------------------------------------- | |
| ----------------------------------------- | |
| | rollout/ | | | |
| | ep_len_mean | 1e+03 | | |
| | ep_rew_mean | -2.79e+04 | | |
| | time/ | | | |
| | fps | 129 | | |
| | iterations | 16 | | |
| | time_elapsed | 253 | | |
| | total_timesteps | 32768 | | |
| | train/ | | | |
| | approx_kl | 0.004814163 | | |
| | clip_fraction | 0.0178 | | |
| | clip_range | 0.2 | | |
| | entropy_loss | -5.43 | | |
| | explained_variance | 1.19e-07 | | |
| | learning_rate | 0.0003 | | |
| | loss | 5.79e+04 | | |
| | n_updates | 150 | | |
| | policy_gradient_loss | -0.000932 | | |
| | std | 0.939 | | |
| | value_loss | 1.42e+05 | | |
| ----------------------------------------- | |
| ------------------------------------------ | |
| | rollout/ | | | |
| | ep_len_mean | 1e+03 | | |
| | ep_rew_mean | -2.82e+04 | | |
| | time/ | | | |
| | fps | 130 | | |
| | iterations | 17 | | |
| | time_elapsed | 266 | | |
| | total_timesteps | 34816 | | |
| | train/ | | | |
| | approx_kl | 0.0027875581 | | |
| | clip_fraction | 0.0163 | | |
| | clip_range | 0.2 | | |
| | entropy_loss | -5.43 | | |
| | explained_variance | 1.19e-07 | | |
| | learning_rate | 0.0003 | | |
| | loss | 1.62e+05 | | |
| | n_updates | 160 | | |
| | policy_gradient_loss | -0.00144 | | |
| | std | 0.94 | | |
| | value_loss | 3.25e+05 | | |
| ------------------------------------------ | |
| ------------------------------------------ | |
| | rollout/ | | | |
| | ep_len_mean | 1e+03 | | |
| | ep_rew_mean | -2.84e+04 | | |
| | time/ | | | |
| | fps | 132 | | |
| | iterations | 18 | | |
| | time_elapsed | 277 | | |
| | total_timesteps | 36864 | | |
| | train/ | | | |
| | approx_kl | 0.0035902325 | | |
| | clip_fraction | 0.0154 | | |
| | clip_range | 0.2 | | |
| | entropy_loss | -5.43 | | |
| | explained_variance | 1.19e-07 | | |
| | learning_rate | 0.0003 | | |
| | loss | 1.59e+05 | | |
| | n_updates | 170 | | |
| | policy_gradient_loss | -0.00172 | | |
| | std | 0.942 | | |
| | value_loss | 3.88e+05 | | |
| ------------------------------------------ | |
| ------------------------------------------ | |
| | rollout/ | | | |
| | ep_len_mean | 1e+03 | | |
| | ep_rew_mean | -2.83e+04 | | |
| | time/ | | | |
| | fps | 134 | | |
| | iterations | 19 | | |
| | time_elapsed | 289 | | |
| | total_timesteps | 38912 | | |
| | train/ | | | |
| | approx_kl | 0.0044348813 | | |
| | clip_fraction | 0.025 | | |
| | clip_range | 0.2 | | |
| | entropy_loss | -5.44 | | |
| | explained_variance | -1.19e-07 | | |
| | learning_rate | 0.0003 | | |
| | loss | 1.36e+05 | | |
| | n_updates | 180 | | |
| | policy_gradient_loss | -0.00187 | | |
| | std | 0.943 | | |
| | value_loss | 2.4e+05 | | |
| ------------------------------------------ | |
| ----------------------------------------- | |
| | rollout/ | | | |
| | ep_len_mean | 1e+03 | | |
| | ep_rew_mean | -2.77e+04 | | |
| | time/ | | | |
| | fps | 136 | | |
| | iterations | 20 | | |
| | time_elapsed | 300 | | |
| | total_timesteps | 40960 | | |
| | train/ | | | |
| | approx_kl | 0.003115609 | | |
| | clip_fraction | 0.0162 | | |
| | clip_range | 0.2 | | |
| | entropy_loss | -5.42 | | |
| | explained_variance | 0 | | |
| | learning_rate | 0.0003 | | |
| | loss | 1.02e+05 | | |
| | n_updates | 190 | | |
| | policy_gradient_loss | -0.00152 | | |
| | std | 0.936 | | |
| | value_loss | 2.02e+05 | | |
| ----------------------------------------- | |
| ------------------------------------------ | |
| | rollout/ | | | |
| | ep_len_mean | 1e+03 | | |
| | ep_rew_mean | -2.72e+04 | | |
| | time/ | | | |
| | fps | 136 | | |
| | iterations | 21 | | |
| | time_elapsed | 314 | | |
| | total_timesteps | 43008 | | |
| | train/ | | | |
| | approx_kl | 0.0044121114 | | |
| | clip_fraction | 0.0311 | | |
| | clip_range | 0.2 | | |
| | entropy_loss | -5.42 | | |
| | explained_variance | -1.19e-07 | | |
| | learning_rate | 0.0003 | | |
| | loss | 4.9e+04 | | |
| | n_updates | 200 | | |
| | policy_gradient_loss | -0.00261 | | |
| | std | 0.941 | | |
| | value_loss | 1.09e+05 | | |
| ------------------------------------------ | |
| ------------------------------------------ | |
| | rollout/ | | | |
| | ep_len_mean | 1e+03 | | |
| | ep_rew_mean | -2.69e+04 | | |
| | time/ | | | |
| | fps | 138 | | |
| | iterations | 22 | | |
| | time_elapsed | 326 | | |
| | total_timesteps | 45056 | | |
| | train/ | | | |
| | approx_kl | 0.0050966754 | | |
| | clip_fraction | 0.0294 | | |
| | clip_range | 0.2 | | |
| | entropy_loss | -5.41 | | |
| | explained_variance | 1.19e-07 | | |
| | learning_rate | 0.0003 | | |
| | loss | 5.13e+04 | | |
| | n_updates | 210 | | |
| | policy_gradient_loss | -0.00221 | | |
| | std | 0.933 | | |
| | value_loss | 1.11e+05 | | |
| ------------------------------------------ | |
| ------------------------------------------ | |
| | rollout/ | | | |
| | ep_len_mean | 1e+03 | | |
| | ep_rew_mean | -2.71e+04 | | |
| | time/ | | | |
| | fps | 139 | | |
| | iterations | 23 | | |
| | time_elapsed | 337 | | |
| | total_timesteps | 47104 | | |
| | train/ | | | |
| | approx_kl | 0.0042023044 | | |
| | clip_fraction | 0.0154 | | |
| | clip_range | 0.2 | | |
| | entropy_loss | -5.4 | | |
| | explained_variance | 0 | | |
| | learning_rate | 0.0003 | | |
| | loss | 5.53e+04 | | |
| | n_updates | 220 | | |
| | policy_gradient_loss | -0.000932 | | |
| | std | 0.934 | | |
| | value_loss | 1.32e+05 | | |
| ------------------------------------------ | |
| ------------------------------------------ | |
| | rollout/ | | | |
| | ep_len_mean | 1e+03 | | |
| | ep_rew_mean | -2.74e+04 | | |
| | time/ | | | |
| | fps | 140 | | |
| | iterations | 24 | | |
| | time_elapsed | 348 | | |
| | total_timesteps | 49152 | | |
| | train/ | | | |
| | approx_kl | 0.0060270163 | | |
| | clip_fraction | 0.0548 | | |
| | clip_range | 0.2 | | |
| | entropy_loss | -5.4 | | |
| | explained_variance | -1.19e-07 | | |
| | learning_rate | 0.0003 | | |
| | loss | 1.27e+05 | | |
| | n_updates | 230 | | |
| | policy_gradient_loss | -0.00514 | | |
| | std | 0.932 | | |
| | value_loss | 2.93e+05 | | |
| ------------------------------------------ | |
| ----------------------------------------- | |
| | rollout/ | | | |
| | ep_len_mean | 1e+03 | | |
| | ep_rew_mean | -2.77e+04 | | |
| | time/ | | | |
| | fps | 141 | | |
| | iterations | 25 | | |
| | time_elapsed | 361 | | |
| | total_timesteps | 51200 | | |
| | train/ | | | |
| | approx_kl | 0.003641401 | | |
| | clip_fraction | 0.0161 | | |
| | clip_range | 0.2 | | |
| | entropy_loss | -5.4 | | |
| | explained_variance | 0 | | |
| | learning_rate | 0.0003 | | |
| | loss | 1.7e+05 | | |
| | n_updates | 240 | | |
| | policy_gradient_loss | -0.00216 | | |
| | std | 0.937 | | |
| | value_loss | 3.48e+05 | | |
| ----------------------------------------- | |
| ------------------------------------------ | |
| | rollout/ | | | |
| | ep_len_mean | 1e+03 | | |
| | ep_rew_mean | -2.79e+04 | | |
| | time/ | | | |
| | fps | 142 | | |
| | iterations | 26 | | |
| | time_elapsed | 372 | | |
| | total_timesteps | 53248 | | |
| | train/ | | | |
| | approx_kl | 0.0040730843 | | |
| | clip_fraction | 0.0225 | | |
| | clip_range | 0.2 | | |
| | entropy_loss | -5.41 | | |
| | explained_variance | 5.96e-08 | | |
| | learning_rate | 0.0003 | | |
| | loss | 2.05e+05 | | |
| | n_updates | 250 | | |
| | policy_gradient_loss | -0.00147 | | |
| | std | 0.934 | | |
| | value_loss | 4.28e+05 | | |
| ------------------------------------------ | |
| ----------------------------------------- | |
| | rollout/ | | | |
| | ep_len_mean | 1e+03 | | |
| | ep_rew_mean | -2.8e+04 | | |
| | time/ | | | |
| | fps | 143 | | |
| | iterations | 27 | | |
| | time_elapsed | 384 | | |
| | total_timesteps | 55296 | | |
| | train/ | | | |
| | approx_kl | 0.003144626 | | |
| | clip_fraction | 0.00791 | | |
| | clip_range | 0.2 | | |
| | entropy_loss | -5.42 | | |
| | explained_variance | 0 | | |
| | learning_rate | 0.0003 | | |
| | loss | 1.71e+05 | | |
| | n_updates | 260 | | |
| | policy_gradient_loss | -0.00195 | | |
| | std | 0.94 | | |
| | value_loss | 3.93e+05 | | |
| ----------------------------------------- | |
| ------------------------------------------ | |
| | rollout/ | | | |
| | ep_len_mean | 1e+03 | | |
| | ep_rew_mean | -2.83e+04 | | |
| | time/ | | | |
| | fps | 144 | | |
| | iterations | 28 | | |
| | time_elapsed | 397 | | |
| | total_timesteps | 57344 | | |
| | train/ | | | |
| | approx_kl | 0.0052720373 | | |
| | clip_fraction | 0.0272 | | |
| | clip_range | 0.2 | | |
| | entropy_loss | -5.42 | | |
| | explained_variance | 0 | | |
| | learning_rate | 0.0003 | | |
| | loss | 1.75e+05 | | |
| | n_updates | 270 | | |
| | policy_gradient_loss | -0.00242 | | |
| | std | 0.935 | | |
| | value_loss | 3.07e+05 | | |
| ------------------------------------------ | |
| ------------------------------------------ | |
| | rollout/ | | | |
| | ep_len_mean | 1e+03 | | |
| | ep_rew_mean | -2.79e+04 | | |
| | time/ | | | |
| | fps | 145 | | |
| | iterations | 29 | | |
| | time_elapsed | 409 | | |
| | total_timesteps | 59392 | | |
| | train/ | | | |
| | approx_kl | 0.0041839215 | | |
| | clip_fraction | 0.0244 | | |
| | clip_range | 0.2 | | |
| | entropy_loss | -5.4 | | |
| | explained_variance | 5.96e-08 | | |
| | learning_rate | 0.0003 | | |
| | loss | 1.79e+05 | | |
| | n_updates | 280 | | |
| | policy_gradient_loss | -0.00283 | | |
| | std | 0.933 | | |
| | value_loss | 3.86e+05 | | |
| ------------------------------------------ | |
| ------------------------------------------ | |
| | rollout/ | | | |
| | ep_len_mean | 1e+03 | | |
| | ep_rew_mean | -2.8e+04 | | |
| | time/ | | | |
| | fps | 145 | | |
| | iterations | 30 | | |
| | time_elapsed | 421 | | |
| | total_timesteps | 61440 | | |
| | train/ | | | |
| | approx_kl | 0.0053371564 | | |
| | clip_fraction | 0.0308 | | |
| | clip_range | 0.2 | | |
| | entropy_loss | -5.35 | | |
| | explained_variance | -1.19e-07 | | |
| | learning_rate | 0.0003 | | |
| | loss | 3.19e+04 | | |
| | n_updates | 290 | | |
| | policy_gradient_loss | -0.00282 | | |
| | std | 0.915 | | |
| | value_loss | 6.26e+04 | | |
| ------------------------------------------ | |
| ------------------------------------------ | |
| | rollout/ | | | |
| | ep_len_mean | 1e+03 | | |
| | ep_rew_mean | -2.78e+04 | | |
| | time/ | | | |
| | fps | 146 | | |
| | iterations | 31 | | |
| | time_elapsed | 433 | | |
| | total_timesteps | 63488 | | |
| | train/ | | | |
| | approx_kl | 0.0045930664 | | |
| | clip_fraction | 0.0416 | | |
| | clip_range | 0.2 | | |
| | entropy_loss | -5.31 | | |
| | explained_variance | 1.19e-07 | | |
| | learning_rate | 0.0003 | | |
| | loss | 1.66e+05 | | |
| | n_updates | 300 | | |
| | policy_gradient_loss | -0.00376 | | |
| | std | 0.913 | | |
| | value_loss | 3.15e+05 | | |
| ------------------------------------------ | |
| ----------------------------------------- | |
| | rollout/ | | | |
| | ep_len_mean | 1e+03 | | |
| | ep_rew_mean | -2.77e+04 | | |
| | time/ | | | |
| | fps | 147 | | |
| | iterations | 32 | | |
| | time_elapsed | 445 | | |
| | total_timesteps | 65536 | | |
| | train/ | | | |
| | approx_kl | 0.006433362 | | |
| | clip_fraction | 0.0423 | | |
| | clip_range | 0.2 | | |
| | entropy_loss | -5.29 | | |
| | explained_variance | 0 | | |
| | learning_rate | 0.0003 | | |
| | loss | 7.14e+04 | | |
| | n_updates | 310 | | |
| | policy_gradient_loss | -0.00386 | | |
| | std | 0.906 | | |
| | value_loss | 1.45e+05 | | |
| ----------------------------------------- | |
| ------------------------------------------ | |
| | rollout/ | | | |
| | ep_len_mean | 1e+03 | | |
| | ep_rew_mean | -2.74e+04 | | |
| | time/ | | | |
| | fps | 147 | | |
| | iterations | 33 | | |
| | time_elapsed | 457 | | |
| | total_timesteps | 67584 | | |
| | train/ | | | |
| | approx_kl | 0.0060111308 | | |
| | clip_fraction | 0.0567 | | |
| | clip_range | 0.2 | | |
| | entropy_loss | -5.27 | | |
| | explained_variance | 5.96e-08 | | |
| | learning_rate | 0.0003 | | |
| | loss | 8.6e+04 | | |
| | n_updates | 320 | | |
| | policy_gradient_loss | -0.004 | | |
| | std | 0.904 | | |
| | value_loss | 1.9e+05 | | |
| ------------------------------------------ | |
| ----------------------------------------- | |
| | rollout/ | | | |
| | ep_len_mean | 1e+03 | | |
| | ep_rew_mean | -2.71e+04 | | |
| | time/ | | | |
| | fps | 148 | | |
| | iterations | 34 | | |
| | time_elapsed | 469 | | |
| | total_timesteps | 69632 | | |
| | train/ | | | |
| | approx_kl | 0.002752479 | | |
| | clip_fraction | 0.0267 | | |
| | clip_range | 0.2 | | |
| | entropy_loss | -5.28 | | |
| | explained_variance | -1.19e-07 | | |
| | learning_rate | 0.0003 | | |
| | loss | 3.72e+04 | | |
| | n_updates | 330 | | |
| | policy_gradient_loss | -0.000776 | | |
| | std | 0.909 | | |
| | value_loss | 5.9e+04 | | |
| ----------------------------------------- | |
| ----------------------------------------- | |
| | rollout/ | | | |
| | ep_len_mean | 1e+03 | | |
| | ep_rew_mean | -2.7e+04 | | |
| | time/ | | | |
| | fps | 149 | | |
| | iterations | 35 | | |
| | time_elapsed | 480 | | |
| | total_timesteps | 71680 | | |
| | train/ | | | |
| | approx_kl | 0.004144692 | | |
| | clip_fraction | 0.0243 | | |
| | clip_range | 0.2 | | |
| | entropy_loss | -5.29 | | |
| | explained_variance | 1.19e-07 | | |
| | learning_rate | 0.0003 | | |
| | loss | 4.48e+04 | | |
| | n_updates | 340 | | |
| | policy_gradient_loss | -0.00131 | | |
| | std | 0.907 | | |
| | value_loss | 1.06e+05 | | |
| ----------------------------------------- | |
| ------------------------------------------ | |
| | rollout/ | | | |
| | ep_len_mean | 1e+03 | | |
| | ep_rew_mean | -2.69e+04 | | |
| | time/ | | | |
| | fps | 149 | | |
| | iterations | 36 | | |
| | time_elapsed | 492 | | |
| | total_timesteps | 73728 | | |
| | train/ | | | |
| | approx_kl | 0.0060227686 | | |
| | clip_fraction | 0.043 | | |
| | clip_range | 0.2 | | |
| | entropy_loss | -5.28 | | |
| | explained_variance | 1.19e-07 | | |
| | learning_rate | 0.0003 | | |
| | loss | 9.28e+04 | | |
| | n_updates | 350 | | |
| | policy_gradient_loss | -0.00293 | | |
| | std | 0.903 | | |
| | value_loss | 1.91e+05 | | |
| ------------------------------------------ | |
| ----------------------------------------- | |
| | rollout/ | | | |
| | ep_len_mean | 1e+03 | | |
| | ep_rew_mean | -2.68e+04 | | |
| | time/ | | | |
| | fps | 150 | | |
| | iterations | 37 | | |
| | time_elapsed | 504 | | |
| | total_timesteps | 75776 | | |
| | train/ | | | |
| | approx_kl | 0.003745494 | | |
| | clip_fraction | 0.0147 | | |
| | clip_range | 0.2 | | |
| | entropy_loss | -5.29 | | |
| | explained_variance | -1.19e-07 | | |
| | learning_rate | 0.0003 | | |
| | loss | 6.81e+04 | | |
| | n_updates | 360 | | |
| | policy_gradient_loss | -0.00168 | | |
| | std | 0.91 | | |
| | value_loss | 1.31e+05 | | |
| ----------------------------------------- | |
| ------------------------------------------ | |
| | rollout/ | | | |
| | ep_len_mean | 1e+03 | | |
| | ep_rew_mean | -2.71e+04 | | |
| | time/ | | | |
| | fps | 150 | | |
| | iterations | 38 | | |
| | time_elapsed | 516 | | |
| | total_timesteps | 77824 | | |
| | train/ | | | |
| | approx_kl | 0.0039524576 | | |
| | clip_fraction | 0.0286 | | |
| | clip_range | 0.2 | | |
| | entropy_loss | -5.3 | | |
| | explained_variance | 0 | | |
| | learning_rate | 0.0003 | | |
| | loss | 1.13e+05 | | |
| | n_updates | 370 | | |
| | policy_gradient_loss | -0.00305 | | |
| | std | 0.909 | | |
| | value_loss | 2.44e+05 | | |
| ------------------------------------------ | |
| ----------------------------------------- | |
| | rollout/ | | | |
| | ep_len_mean | 1e+03 | | |
| | ep_rew_mean | -2.67e+04 | | |
| | time/ | | | |
| | fps | 150 | | |
| | iterations | 39 | | |
| | time_elapsed | 529 | | |
| | total_timesteps | 79872 | | |
| | train/ | | | |
| | approx_kl | 0.005160669 | | |
| | clip_fraction | 0.0254 | | |
| | clip_range | 0.2 | | |
| | entropy_loss | -5.29 | | |
| | explained_variance | 1.19e-07 | | |
| | learning_rate | 0.0003 | | |
| | loss | 1.6e+05 | | |
| | n_updates | 380 | | |
| | policy_gradient_loss | -0.00292 | | |
| | std | 0.907 | | |
| | value_loss | 2.55e+05 | | |
| ----------------------------------------- | |
| ------------------------------------------ | |
| | rollout/ | | | |
| | ep_len_mean | 1e+03 | | |
| | ep_rew_mean | -2.66e+04 | | |
| | time/ | | | |
| | fps | 151 | | |
| | iterations | 40 | | |
| | time_elapsed | 540 | | |
| | total_timesteps | 81920 | | |
| | train/ | | | |
| | approx_kl | 0.0046265204 | | |
| | clip_fraction | 0.0285 | | |
| | clip_range | 0.2 | | |
| | entropy_loss | -5.27 | | |
| | explained_variance | 0 | | |
| | learning_rate | 0.0003 | | |
| | loss | 2.09e+04 | | |
| | n_updates | 390 | | |
| | policy_gradient_loss | -0.00145 | | |
| | std | 0.902 | | |
| | value_loss | 3.81e+04 | | |
| ------------------------------------------ | |
| ------------------------------------------ | |
| | rollout/ | | | |
| | ep_len_mean | 1e+03 | | |
| | ep_rew_mean | -2.67e+04 | | |
| | time/ | | | |
| | fps | 151 | | |
| | iterations | 41 | | |
| | time_elapsed | 553 | | |
| | total_timesteps | 83968 | | |
| | train/ | | | |
| | approx_kl | 0.0042863134 | | |
| | clip_fraction | 0.0239 | | |
| | clip_range | 0.2 | | |
| | entropy_loss | -5.26 | | |
| | explained_variance | 0 | | |
| | learning_rate | 0.0003 | | |
| | loss | 9.31e+04 | | |
| | n_updates | 400 | | |
| | policy_gradient_loss | -0.00143 | | |
| | std | 0.9 | | |
| | value_loss | 1.85e+05 | | |
| ------------------------------------------ | |
| ----------------------------------------- | |
| | rollout/ | | | |
| | ep_len_mean | 1e+03 | | |
| | ep_rew_mean | -2.68e+04 | | |
| | time/ | | | |
| | fps | 151 | | |
| | iterations | 42 | | |
| | time_elapsed | 566 | | |
| | total_timesteps | 86016 | | |
| | train/ | | | |
| | approx_kl | 0.005065168 | | |
| | clip_fraction | 0.0253 | | |
| | clip_range | 0.2 | | |
| | entropy_loss | -5.24 | | |
| | explained_variance | 1.19e-07 | | |
| | learning_rate | 0.0003 | | |
| | loss | 1.1e+05 | | |
| | n_updates | 410 | | |
| | policy_gradient_loss | -0.0026 | | |
| | std | 0.894 | | |
| | value_loss | 2.2e+05 | | |
| ----------------------------------------- | |
| ------------------------------------------ | |
| | rollout/ | | | |
| | ep_len_mean | 1e+03 | | |
| | ep_rew_mean | -2.67e+04 | | |
| | time/ | | | |
| | fps | 152 | | |
| | iterations | 43 | | |
| | time_elapsed | 577 | | |
| | total_timesteps | 88064 | | |
| | train/ | | | |
| | approx_kl | 0.0030657728 | | |
| | clip_fraction | 0.0121 | | |
| | clip_range | 0.2 | | |
| | entropy_loss | -5.22 | | |
| | explained_variance | 0 | | |
| | learning_rate | 0.0003 | | |
| | loss | 1.52e+05 | | |
| | n_updates | 420 | | |
| | policy_gradient_loss | -0.00173 | | |
| | std | 0.892 | | |
| | value_loss | 3.03e+05 | | |
| ------------------------------------------ | |
| ------------------------------------------ | |
| | rollout/ | | | |
| | ep_len_mean | 1e+03 | | |
| | ep_rew_mean | -2.73e+04 | | |
| | time/ | | | |
| | fps | 153 | | |
| | iterations | 44 | | |
| | time_elapsed | 588 | | |
| | total_timesteps | 90112 | | |
| | train/ | | | |
| | approx_kl | 0.0051104454 | | |
| | clip_fraction | 0.0357 | | |
| | clip_range | 0.2 | | |
| | entropy_loss | -5.22 | | |
| | explained_variance | -1.19e-07 | | |
| | learning_rate | 0.0003 | | |
| | loss | 8.25e+04 | | |
| | n_updates | 430 | | |
| | policy_gradient_loss | -0.00201 | | |
| | std | 0.893 | | |
| | value_loss | 1.81e+05 | | |
| ------------------------------------------ | |
| ------------------------------------------ | |
| | rollout/ | | | |
| | ep_len_mean | 1e+03 | | |
| | ep_rew_mean | -2.8e+04 | | |
| | time/ | | | |
| | fps | 153 | | |
| | iterations | 45 | | |
| | time_elapsed | 600 | | |
| | total_timesteps | 92160 | | |
| | train/ | | | |
| | approx_kl | 0.0051720007 | | |
| | clip_fraction | 0.033 | | |
| | clip_range | 0.2 | | |
| | entropy_loss | -5.23 | | |
| | explained_variance | 0 | | |
| | learning_rate | 0.0003 | | |
| | loss | 3.47e+05 | | |
| | n_updates | 440 | | |
| | policy_gradient_loss | -0.00428 | | |
| | std | 0.896 | | |
| | value_loss | 7.59e+05 | | |
| ------------------------------------------ | |
| ----------------------------------------- | |
| | rollout/ | | | |
| | ep_len_mean | 1e+03 | | |
| | ep_rew_mean | -2.9e+04 | | |
| | time/ | | | |
| | fps | 153 | | |
| | iterations | 46 | | |
| | time_elapsed | 612 | | |
| | total_timesteps | 94208 | | |
| | train/ | | | |
| | approx_kl | 0.004487371 | | |
| | clip_fraction | 0.0192 | | |
| | clip_range | 0.2 | | |
| | entropy_loss | -5.23 | | |
| | explained_variance | 5.96e-08 | | |
| | learning_rate | 0.0003 | | |
| | loss | 6.84e+05 | | |
| | n_updates | 450 | | |
| | policy_gradient_loss | -0.00245 | | |
| | std | 0.895 | | |
| | value_loss | 1.3e+06 | | |
| ----------------------------------------- | |
| ----------------------------------------- | |
| | rollout/ | | | |
| | ep_len_mean | 1e+03 | | |
| | ep_rew_mean | -2.98e+04 | | |
| | time/ | | | |
| | fps | 153 | | |
| | iterations | 47 | | |
| | time_elapsed | 625 | | |
| | total_timesteps | 96256 | | |
| | train/ | | | |
| | approx_kl | 0.005325151 | | |
| | clip_fraction | 0.0271 | | |
| | clip_range | 0.2 | | |
| | entropy_loss | -5.22 | | |
| | explained_variance | 0 | | |
| | learning_rate | 0.0003 | | |
| | loss | 9.17e+05 | | |
| | n_updates | 460 | | |
| | policy_gradient_loss | -0.00341 | | |
| | std | 0.892 | | |
| | value_loss | 1.81e+06 | | |
| ----------------------------------------- | |
| ----------------------------------------- | |
| | rollout/ | | | |
| | ep_len_mean | 1e+03 | | |
| | ep_rew_mean | -3.08e+04 | | |
| | time/ | | | |
| | fps | 154 | | |
| | iterations | 48 | | |
| | time_elapsed | 637 | | |
| | total_timesteps | 98304 | | |
| | train/ | | | |
| | approx_kl | 0.004731435 | | |
| | clip_fraction | 0.0245 | | |
| | clip_range | 0.2 | | |
| | entropy_loss | -5.21 | | |
| | explained_variance | 0 | | |
| | learning_rate | 0.0003 | | |
| | loss | 8.34e+05 | | |
| | n_updates | 470 | | |
| | policy_gradient_loss | -0.00319 | | |
| | std | 0.888 | | |
| | value_loss | 1.53e+06 | | |
| ----------------------------------------- | |
| ---------------------------------------- | |
| | rollout/ | | | |
| | ep_len_mean | 1e+03 | | |
| | ep_rew_mean | -3.21e+04 | | |
| | time/ | | | |
| | fps | 154 | | |
| | iterations | 49 | | |
| | time_elapsed | 648 | | |
| | total_timesteps | 100352 | | |
| | train/ | | | |
| | approx_kl | 0.00386829 | | |
| | clip_fraction | 0.00859 | | |
| | clip_range | 0.2 | | |
| | entropy_loss | -5.2 | | |
| | explained_variance | -1.19e-07 | | |
| | learning_rate | 0.0003 | | |
| | loss | 1.05e+06 | | |
| | n_updates | 480 | | |
| | policy_gradient_loss | -0.00151 | | |
| | std | 0.887 | | |
| | value_loss | 2.04e+06 | | |
| ---------------------------------------- | |
| ----------------------------------------- | |
| | rollout/ | | | |
| | ep_len_mean | 1e+03 | | |
| | ep_rew_mean | -3.34e+04 | | |
| | time/ | | | |
| | fps | 154 | | |
| | iterations | 50 | | |
| | time_elapsed | 660 | | |
| | total_timesteps | 102400 | | |
| | train/ | | | |
| | approx_kl | 0.005242249 | | |
| | clip_fraction | 0.0372 | | |
| | clip_range | 0.2 | | |
| | entropy_loss | -5.2 | | |
| | explained_variance | -1.19e-07 | | |
| | learning_rate | 0.0003 | | |
| | loss | 1.95e+06 | | |
| | n_updates | 490 | | |
| | policy_gradient_loss | -0.00506 | | |
| | std | 0.889 | | |
| | value_loss | 3.17e+06 | | |
| ----------------------------------------- | |
| ----------------------------------------- | |
| | rollout/ | | | |
| | ep_len_mean | 1e+03 | | |
| | ep_rew_mean | -3.5e+04 | | |
| | time/ | | | |
| | fps | 155 | | |
| | iterations | 51 | | |
| | time_elapsed | 673 | | |
| | total_timesteps | 104448 | | |
| | train/ | | | |
| | approx_kl | 0.003204999 | | |
| | clip_fraction | 0.00566 | | |
| | clip_range | 0.2 | | |
| | entropy_loss | -5.21 | | |
| | explained_variance | 5.96e-08 | | |
| | learning_rate | 0.0003 | | |
| | loss | 1.29e+06 | | |
| | n_updates | 500 | | |
| | policy_gradient_loss | -0.000996 | | |
| | std | 0.89 | | |
| | value_loss | 3.12e+06 | | |
| ----------------------------------------- | |
| ------------------------------------------ | |
| | rollout/ | | | |
| | ep_len_mean | 1e+03 | | |
| | ep_rew_mean | -3.71e+04 | | |
| | time/ | | | |
| | fps | 155 | | |
| | iterations | 52 | | |
| | time_elapsed | 685 | | |
| | total_timesteps | 106496 | | |
| | train/ | | | |
| | approx_kl | 0.0037713286 | | |
| | clip_fraction | 0.0106 | | |
| | clip_range | 0.2 | | |
| | entropy_loss | -5.2 | | |
| | explained_variance | 5.96e-08 | | |
| | learning_rate | 0.0003 | | |
| | loss | 1.73e+06 | | |
| | n_updates | 510 | | |
| | policy_gradient_loss | -0.00205 | | |
| | std | 0.889 | | |
| | value_loss | 3.39e+06 | | |
| ------------------------------------------ | |
| ----------------------------------------- | |
| | rollout/ | | | |
| | ep_len_mean | 1e+03 | | |
| | ep_rew_mean | -3.89e+04 | | |
| | time/ | | | |
| | fps | 155 | | |
| | iterations | 53 | | |
| | time_elapsed | 699 | | |
| | total_timesteps | 108544 | | |
| | train/ | | | |
| | approx_kl | 0.003621605 | | |
| | clip_fraction | 0.00576 | | |
| | clip_range | 0.2 | | |
| | entropy_loss | -5.2 | | |
| | explained_variance | 0 | | |
| | learning_rate | 0.0003 | | |
| | loss | 2.11e+06 | | |
| | n_updates | 520 | | |
| | policy_gradient_loss | -0.00108 | | |
| | std | 0.889 | | |
| | value_loss | 5.23e+06 | | |
| ----------------------------------------- | |
| ------------------------------------------ | |
| | rollout/ | | | |
| | ep_len_mean | 1e+03 | | |
| | ep_rew_mean | -4.07e+04 | | |
| | time/ | | | |
| | fps | 155 | | |
| | iterations | 54 | | |
| | time_elapsed | 710 | | |
| | total_timesteps | 110592 | | |
| | train/ | | | |
| | approx_kl | 0.0037987605 | | |
| | clip_fraction | 0.0108 | | |
| | clip_range | 0.2 | | |
| | entropy_loss | -5.21 | | |
| | explained_variance | 0 | | |
| | learning_rate | 0.0003 | | |
| | loss | 2.02e+06 | | |
| | n_updates | 530 | | |
| | policy_gradient_loss | -0.00193 | | |
| | std | 0.891 | | |
| | value_loss | 4.78e+06 | | |
| ------------------------------------------ | |
| ------------------------------------------ | |
| | rollout/ | | | |
| | ep_len_mean | 1e+03 | | |
| | ep_rew_mean | -4.31e+04 | | |
| | time/ | | | |
| | fps | 155 | | |
| | iterations | 55 | | |
| | time_elapsed | 722 | | |
| | total_timesteps | 112640 | | |
| | train/ | | | |
| | approx_kl | 0.0041659893 | | |
| | clip_fraction | 0.00801 | | |
| | clip_range | 0.2 | | |
| | entropy_loss | -5.21 | | |
| | explained_variance | 0 | | |
| | learning_rate | 0.0003 | | |
| | loss | 2.27e+06 | | |
| | n_updates | 540 | | |
| | policy_gradient_loss | -0.00111 | | |
| | std | 0.89 | | |
| | value_loss | 5e+06 | | |
| ------------------------------------------ | |
| ------------------------------------------ | |
| | rollout/ | | | |
| | ep_len_mean | 1e+03 | | |
| | ep_rew_mean | -4.52e+04 | | |
| | time/ | | | |
| | fps | 156 | | |
| | iterations | 56 | | |
| | time_elapsed | 734 | | |
| | total_timesteps | 114688 | | |
| | train/ | | | |
| | approx_kl | 0.0052787326 | | |
| | clip_fraction | 0.0296 | | |
| | clip_range | 0.2 | | |
| | entropy_loss | -5.21 | | |
| | explained_variance | 5.96e-08 | | |
| | learning_rate | 0.0003 | | |
| | loss | 3.7e+06 | | |
| | n_updates | 550 | | |
| | policy_gradient_loss | -0.00406 | | |
| | std | 0.889 | | |
| | value_loss | 6.79e+06 | | |
| ------------------------------------------ | |
| ----------------------------------------- | |
| | rollout/ | | | |
| | ep_len_mean | 1e+03 | | |
| | ep_rew_mean | -4.67e+04 | | |
| | time/ | | | |
| | fps | 156 | | |
| | iterations | 57 | | |
| | time_elapsed | 746 | | |
| | total_timesteps | 116736 | | |
| | train/ | | | |
| | approx_kl | 0.004433933 | | |
| | clip_fraction | 0.0184 | | |
| | clip_range | 0.2 | | |
| | entropy_loss | -5.2 | | |
| | explained_variance | 5.96e-08 | | |
| | learning_rate | 0.0003 | | |
| | loss | 2.93e+06 | | |
| | n_updates | 560 | | |
| | policy_gradient_loss | -0.00222 | | |
| | std | 0.888 | | |
| | value_loss | 6.15e+06 | | |
| ----------------------------------------- | |
| ----------------------------------------- | |
| | rollout/ | | | |
| | ep_len_mean | 1e+03 | | |
| | ep_rew_mean | -4.83e+04 | | |
| | time/ | | | |
| | fps | 156 | | |
| | iterations | 58 | | |
| | time_elapsed | 758 | | |
| | total_timesteps | 118784 | | |
| | train/ | | | |
| | approx_kl | 0.004643922 | | |
| | clip_fraction | 0.025 | | |
| | clip_range | 0.2 | | |
| | entropy_loss | -5.2 | | |
| | explained_variance | 0 | | |
| | learning_rate | 0.0003 | | |
| | loss | 2.54e+06 | | |
| | n_updates | 570 | | |
| | policy_gradient_loss | -0.00334 | | |
| | std | 0.888 | | |
| | value_loss | 4.8e+06 | | |
| ----------------------------------------- | |
| ----------------------------------------- | |
| | rollout/ | | | |
| | ep_len_mean | 1e+03 | | |
| | ep_rew_mean | -4.99e+04 | | |
| | time/ | | | |
| | fps | 156 | | |
| | iterations | 59 | | |
| | time_elapsed | 769 | | |
| | total_timesteps | 120832 | | |
| | train/ | | | |
| | approx_kl | 0.004279623 | | |
| | clip_fraction | 0.00815 | | |
| | clip_range | 0.2 | | |
| | entropy_loss | -5.2 | | |
| | explained_variance | 1.19e-07 | | |
| | learning_rate | 0.0003 | | |
| | loss | 2.58e+06 | | |
| | n_updates | 580 | | |
| | policy_gradient_loss | -0.00133 | | |
| | std | 0.89 | | |
| | value_loss | 4.7e+06 | | |
| ----------------------------------------- | |
| ----------------------------------------- | |
| | rollout/ | | | |
| | ep_len_mean | 1e+03 | | |
| | ep_rew_mean | -5.18e+04 | | |
| | time/ | | | |
| | fps | 157 | | |
| | iterations | 60 | | |
| | time_elapsed | 782 | | |
| | total_timesteps | 122880 | | |
| | train/ | | | |
| | approx_kl | 0.004928913 | | |
| | clip_fraction | 0.0252 | | |
| | clip_range | 0.2 | | |
| | entropy_loss | -5.2 | | |
| | explained_variance | 1.19e-07 | | |
| | learning_rate | 0.0003 | | |
| | loss | 2.06e+06 | | |
| | n_updates | 590 | | |
| | policy_gradient_loss | -0.00314 | | |
| | std | 0.886 | | |
| | value_loss | 4.64e+06 | | |
| ----------------------------------------- | |
| ------------------------------------------ | |
| | rollout/ | | | |
| | ep_len_mean | 1e+03 | | |
| | ep_rew_mean | -5.37e+04 | | |
| | time/ | | | |
| | fps | 157 | | |
| | iterations | 61 | | |
| | time_elapsed | 793 | | |
| | total_timesteps | 124928 | | |
| | train/ | | | |
| | approx_kl | 0.0044577485 | | |
| | clip_fraction | 0.0167 | | |
| | clip_range | 0.2 | | |
| | entropy_loss | -5.19 | | |
| | explained_variance | 0 | | |
| | learning_rate | 0.0003 | | |
| | loss | 2.75e+06 | | |
| | n_updates | 600 | | |
| | policy_gradient_loss | -0.00216 | | |
| | std | 0.884 | | |
| | value_loss | 5.37e+06 | | |
| ------------------------------------------ | |
| ------------------------------------------ | |
| | rollout/ | | | |
| | ep_len_mean | 1e+03 | | |
| | ep_rew_mean | -5.54e+04 | | |
| | time/ | | | |
| | fps | 157 | | |
| | iterations | 62 | | |
| | time_elapsed | 805 | | |
| | total_timesteps | 126976 | | |
| | train/ | | | |
| | approx_kl | 0.0033779903 | | |
| | clip_fraction | 0.00854 | | |
| | clip_range | 0.2 | | |
| | entropy_loss | -5.19 | | |
| | explained_variance | 0 | | |
| | learning_rate | 0.0003 | | |
| | loss | 2.75e+06 | | |
| | n_updates | 610 | | |
| | policy_gradient_loss | -0.000881 | | |
| | std | 0.887 | | |
| | value_loss | 5.11e+06 | | |
| ------------------------------------------ | |
| ------------------------------------------ | |
| | rollout/ | | | |
| | ep_len_mean | 1e+03 | | |
| | ep_rew_mean | -5.84e+04 | | |
| | time/ | | | |
| | fps | 157 | | |
| | iterations | 63 | | |
| | time_elapsed | 817 | | |
| | total_timesteps | 129024 | | |
| | train/ | | | |
| | approx_kl | 0.0036522774 | | |
| | clip_fraction | 0.00669 | | |
| | clip_range | 0.2 | | |
| | entropy_loss | -5.2 | | |
| | explained_variance | 0 | | |
| | learning_rate | 0.0003 | | |
| | loss | 2.36e+06 | | |
| | n_updates | 620 | | |
| | policy_gradient_loss | -0.00121 | | |
| | std | 0.889 | | |
| | value_loss | 5.49e+06 | | |
| ------------------------------------------ | |
| ----------------------------------------- | |
| | rollout/ | | | |
| | ep_len_mean | 1e+03 | | |
| | ep_rew_mean | -6.02e+04 | | |
| | time/ | | | |
| | fps | 158 | | |
| | iterations | 64 | | |
| | time_elapsed | 829 | | |
| | total_timesteps | 131072 | | |
| | train/ | | | |
| | approx_kl | 0.005089692 | | |
| | clip_fraction | 0.0314 | | |
| | clip_range | 0.2 | | |
| | entropy_loss | -5.2 | | |
| | explained_variance | -1.19e-07 | | |
| | learning_rate | 0.0003 | | |
| | loss | 2.64e+06 | | |
| | n_updates | 630 | | |
| | policy_gradient_loss | -0.00405 | | |
| | std | 0.887 | | |
| | value_loss | 5.26e+06 | | |
| ----------------------------------------- | |
| ----------------------------------------- | |
| | rollout/ | | | |
| | ep_len_mean | 1e+03 | | |
| | ep_rew_mean | -6.17e+04 | | |
| | time/ | | | |
| | fps | 158 | | |
| | iterations | 65 | | |
| | time_elapsed | 841 | | |
| | total_timesteps | 133120 | | |
| | train/ | | | |
| | approx_kl | 0.004889611 | | |
| | clip_fraction | 0.0176 | | |
| | clip_range | 0.2 | | |
| | entropy_loss | -5.2 | | |
| | explained_variance | 1.19e-07 | | |
| | learning_rate | 0.0003 | | |
| | loss | 1.92e+06 | | |
| | n_updates | 640 | | |
| | policy_gradient_loss | -0.00247 | | |
| | std | 0.888 | | |
| | value_loss | 4.65e+06 | | |
| ----------------------------------------- | |
| ----------------------------------------- | |
| | rollout/ | | | |
| | ep_len_mean | 1e+03 | | |
| | ep_rew_mean | -6.28e+04 | | |
| | time/ | | | |
| | fps | 158 | | |
| | iterations | 66 | | |
| | time_elapsed | 853 | | |
| | total_timesteps | 135168 | | |
| | train/ | | | |
| | approx_kl | 0.004658374 | | |
| | clip_fraction | 0.021 | | |
| | clip_range | 0.2 | | |
| | entropy_loss | -5.19 | | |
| | explained_variance | 0 | | |
| | learning_rate | 0.0003 | | |
| | loss | 1.67e+06 | | |
| | n_updates | 650 | | |
| | policy_gradient_loss | -0.00222 | | |
| | std | 0.886 | | |
| | value_loss | 3.85e+06 | | |
| ----------------------------------------- | |
| ---------------------------------------- | |
| | rollout/ | | | |
| | ep_len_mean | 1e+03 | | |
| | ep_rew_mean | -6.38e+04 | | |
| | time/ | | | |
| | fps | 158 | | |
| | iterations | 67 | | |
| | time_elapsed | 866 | | |
| | total_timesteps | 137216 | | |
| | train/ | | | |
| | approx_kl | 0.00569404 | | |
| | clip_fraction | 0.0394 | | |
| | clip_range | 0.2 | | |
| | entropy_loss | -5.19 | | |
| | explained_variance | 5.96e-08 | | |
| | learning_rate | 0.0003 | | |
| | loss | 1.44e+06 | | |
| | n_updates | 660 | | |
| | policy_gradient_loss | -0.00414 | | |
| | std | 0.887 | | |
| | value_loss | 2.78e+06 | | |
| ---------------------------------------- | |
| ----------------------------------------- | |
| | rollout/ | | | |
| | ep_len_mean | 1e+03 | | |
| | ep_rew_mean | -6.47e+04 | | |
| | time/ | | | |
| | fps | 157 | | |
| | iterations | 68 | | |
| | time_elapsed | 887 | | |
| | total_timesteps | 139264 | | |
| | train/ | | | |
| | approx_kl | 0.004979359 | | |
| | clip_fraction | 0.0314 | | |
| | clip_range | 0.2 | | |
| | entropy_loss | -5.19 | | |
| | explained_variance | 0 | | |
| | learning_rate | 0.0003 | | |
| | loss | 7.57e+05 | | |
| | n_updates | 670 | | |
| | policy_gradient_loss | -0.00347 | | |
| | std | 0.883 | | |
| | value_loss | 1.69e+06 | | |
| ----------------------------------------- | |
| ----------------------------------------- | |
| | rollout/ | | | |
| | ep_len_mean | 1e+03 | | |
| | ep_rew_mean | -6.6e+04 | | |
| | time/ | | | |
| | fps | 155 | | |
| | iterations | 69 | | |
| | time_elapsed | 911 | | |
| | total_timesteps | 141312 | | |
| | train/ | | | |
| | approx_kl | 0.003934146 | | |
| | clip_fraction | 0.0181 | | |
| | clip_range | 0.2 | | |
| | entropy_loss | -5.17 | | |
| | explained_variance | 0 | | |
| | learning_rate | 0.0003 | | |
| | loss | 8.59e+05 | | |
| | n_updates | 680 | | |
| | policy_gradient_loss | -0.002 | | |
| | std | 0.882 | | |
| | value_loss | 1.66e+06 | | |
| ----------------------------------------- | |
| ---------------------------------------- | |
| | rollout/ | | | |
| | ep_len_mean | 1e+03 | | |
| | ep_rew_mean | -6.73e+04 | | |
| | time/ | | | |
| | fps | 154 | | |
| | iterations | 70 | | |
| | time_elapsed | 929 | | |
| | total_timesteps | 143360 | | |
| | train/ | | | |
| | approx_kl | 0.00488944 | | |
| | clip_fraction | 0.0386 | | |
| | clip_range | 0.2 | | |
| | entropy_loss | -5.17 | | |
| | explained_variance | 0 | | |
| | learning_rate | 0.0003 | | |
| | loss | 1.07e+06 | | |
| | n_updates | 690 | | |
| | policy_gradient_loss | -0.00419 | | |
| | std | 0.879 | | |
| | value_loss | 2.26e+06 | | |
| ---------------------------------------- | |
| ------------------------------------------ | |
| | rollout/ | | | |
| | ep_len_mean | 1e+03 | | |
| | ep_rew_mean | -6.88e+04 | | |
| | time/ | | | |
| | fps | 151 | | |
| | iterations | 71 | | |
| | time_elapsed | 956 | | |
| | total_timesteps | 145408 | | |
| | train/ | | | |
| | approx_kl | 0.0039507896 | | |
| | clip_fraction | 0.026 | | |
| | clip_range | 0.2 | | |
| | entropy_loss | -5.16 | | |
| | explained_variance | -2.38e-07 | | |
| | learning_rate | 0.0003 | | |
| | loss | 1.23e+06 | | |
| | n_updates | 700 | | |
| | policy_gradient_loss | -0.00263 | | |
| | std | 0.879 | | |
| | value_loss | 2.33e+06 | | |
| ------------------------------------------ | |
| ------------------------------------------ | |
| | rollout/ | | | |
| | ep_len_mean | 1e+03 | | |
| | ep_rew_mean | -7e+04 | | |
| | time/ | | | |
| | fps | 151 | | |
| | iterations | 72 | | |
| | time_elapsed | 974 | | |
| | total_timesteps | 147456 | | |
| | train/ | | | |
| | approx_kl | 0.0048819017 | | |
| | clip_fraction | 0.0321 | | |
| | clip_range | 0.2 | | |
| | entropy_loss | -5.16 | | |
| | explained_variance | -1.19e-07 | | |
| | learning_rate | 0.0003 | | |
| | loss | 1.66e+06 | | |
| | n_updates | 710 | | |
| | policy_gradient_loss | -0.00324 | | |
| | std | 0.877 | | |
| | value_loss | 3.4e+06 | | |
| ------------------------------------------ | |
| ------------------------------------------ | |
| | rollout/ | | | |
| | ep_len_mean | 1e+03 | | |
| | ep_rew_mean | -7.08e+04 | | |
| | time/ | | | |
| | fps | 150 | | |
| | iterations | 73 | | |
| | time_elapsed | 994 | | |
| | total_timesteps | 149504 | | |
| | train/ | | | |
| | approx_kl | 0.0051534167 | | |
| | clip_fraction | 0.0276 | | |
| | clip_range | 0.2 | | |
| | entropy_loss | -5.15 | | |
| | explained_variance | 5.96e-08 | | |
| | learning_rate | 0.0003 | | |
| | loss | 1.15e+06 | | |
| | n_updates | 720 | | |
| | policy_gradient_loss | -0.0034 | | |
| | std | 0.877 | | |
| | value_loss | 2.73e+06 | | |
| ------------------------------------------ | |
| ------------------------------------------ | |
| | rollout/ | | | |
| | ep_len_mean | 1e+03 | | |
| | ep_rew_mean | -7.17e+04 | | |
| | time/ | | | |
| | fps | 150 | | |
| | iterations | 74 | | |
| | time_elapsed | 1009 | | |
| | total_timesteps | 151552 | | |
| | train/ | | | |
| | approx_kl | 0.0039522136 | | |
| | clip_fraction | 0.0215 | | |
| | clip_range | 0.2 | | |
| | entropy_loss | -5.17 | | |
| | explained_variance | 5.96e-08 | | |
| | learning_rate | 0.0003 | | |
| | loss | 8.39e+05 | | |
| | n_updates | 730 | | |
| | policy_gradient_loss | -0.00278 | | |
| | std | 0.885 | | |
| | value_loss | 1.82e+06 | | |
| ------------------------------------------ | |
| ------------------------------------------ | |
| | rollout/ | | | |
| | ep_len_mean | 1e+03 | | |
| | ep_rew_mean | -7.25e+04 | | |
| | time/ | | | |
| | fps | 150 | | |
| | iterations | 75 | | |
| | time_elapsed | 1023 | | |
| | total_timesteps | 153600 | | |
| | train/ | | | |
| | approx_kl | 0.0037896927 | | |
| | clip_fraction | 0.0131 | | |
| | clip_range | 0.2 | | |
| | entropy_loss | -5.18 | | |
| | explained_variance | 1.19e-07 | | |
| | learning_rate | 0.0003 | | |
| | loss | 1.18e+06 | | |
| | n_updates | 740 | | |
| | policy_gradient_loss | -0.00183 | | |
| | std | 0.883 | | |
| | value_loss | 2.15e+06 | | |
| ------------------------------------------ | |
| ----------------------------------------- | |
| | rollout/ | | | |
| | ep_len_mean | 1e+03 | | |
| | ep_rew_mean | -7.33e+04 | | |
| | time/ | | | |
| | fps | 149 | | |
| | iterations | 76 | | |
| | time_elapsed | 1038 | | |
| | total_timesteps | 155648 | | |
| | train/ | | | |
| | approx_kl | 0.005035511 | | |
| | clip_fraction | 0.0261 | | |
| | clip_range | 0.2 | | |
| | entropy_loss | -5.16 | | |
| | explained_variance | 0 | | |
| | learning_rate | 0.0003 | | |
| | loss | 6.91e+05 | | |
| | n_updates | 750 | | |
| | policy_gradient_loss | -0.00347 | | |
| | std | 0.877 | | |
| | value_loss | 1.49e+06 | | |
| ----------------------------------------- | |
| ----------------------------------------- | |
| | rollout/ | | | |
| | ep_len_mean | 1e+03 | | |
| | ep_rew_mean | -7.45e+04 | | |
| | time/ | | | |
| | fps | 149 | | |
| | iterations | 77 | | |
| | time_elapsed | 1052 | | |
| | total_timesteps | 157696 | | |
| | train/ | | | |
| | approx_kl | 0.005323178 | | |
| | clip_fraction | 0.0373 | | |
| | clip_range | 0.2 | | |
| | entropy_loss | -5.15 | | |
| | explained_variance | 0 | | |
| | learning_rate | 0.0003 | | |
| | loss | 8.95e+05 | | |
| | n_updates | 760 | | |
| | policy_gradient_loss | -0.00419 | | |
| | std | 0.876 | | |
| | value_loss | 1.9e+06 | | |
| ----------------------------------------- | |
| ----------------------------------------- | |
| | rollout/ | | | |
| | ep_len_mean | 1e+03 | | |
| | ep_rew_mean | -7.61e+04 | | |
| | time/ | | | |
| | fps | 149 | | |
| | iterations | 78 | | |
| | time_elapsed | 1071 | | |
| | total_timesteps | 159744 | | |
| | train/ | | | |
| | approx_kl | 0.005339088 | | |
| | clip_fraction | 0.0279 | | |
| | clip_range | 0.2 | | |
| | entropy_loss | -5.13 | | |
| | explained_variance | 0 | | |
| | learning_rate | 0.0003 | | |
| | loss | 1.56e+06 | | |
| | n_updates | 770 | | |
| | policy_gradient_loss | -0.00348 | | |
| | std | 0.871 | | |
| | value_loss | 3.12e+06 | | |
| ----------------------------------------- | |
| ------------------------------------------ | |
| | rollout/ | | | |
| | ep_len_mean | 1e+03 | | |
| | ep_rew_mean | -7.72e+04 | | |
| | time/ | | | |
| | fps | 148 | | |
| | iterations | 79 | | |
| | time_elapsed | 1088 | | |
| | total_timesteps | 161792 | | |
| | train/ | | | |
| | approx_kl | 0.0021434259 | | |
| | clip_fraction | 0.00132 | | |
| | clip_range | 0.2 | | |
| | entropy_loss | -5.13 | | |
| | explained_variance | 0 | | |
| | learning_rate | 0.0003 | | |
| | loss | 1.39e+06 | | |
| | n_updates | 780 | | |
| | policy_gradient_loss | -0.000295 | | |
| | std | 0.874 | | |
| | value_loss | 3.14e+06 | | |
| ------------------------------------------ | |
| ----------------------------------------- | |
| | rollout/ | | | |
| | ep_len_mean | 1e+03 | | |
| | ep_rew_mean | -7.88e+04 | | |
| | time/ | | | |
| | fps | 148 | | |
| | iterations | 80 | | |
| | time_elapsed | 1106 | | |
| | total_timesteps | 163840 | | |
| | train/ | | | |
| | approx_kl | 0.004515986 | | |
| | clip_fraction | 0.0185 | | |
| | clip_range | 0.2 | | |
| | entropy_loss | -5.13 | | |
| | explained_variance | -2.38e-07 | | |
| | learning_rate | 0.0003 | | |
| | loss | 1.26e+06 | | |
| | n_updates | 790 | | |
| | policy_gradient_loss | -0.00181 | | |
| | std | 0.872 | | |
| | value_loss | 2.6e+06 | | |
| ----------------------------------------- | |
| ----------------------------------------- | |
| | rollout/ | | | |
| | ep_len_mean | 1e+03 | | |
| | ep_rew_mean | -8.02e+04 | | |
| | time/ | | | |
| | fps | 147 | | |
| | iterations | 81 | | |
| | time_elapsed | 1125 | | |
| | total_timesteps | 165888 | | |
| | train/ | | | |
| | approx_kl | 0.004079287 | | |
| | clip_fraction | 0.0139 | | |
| | clip_range | 0.2 | | |
| | entropy_loss | -5.13 | | |
| | explained_variance | 5.96e-08 | | |
| | learning_rate | 0.0003 | | |
| | loss | 1.86e+06 | | |
| | n_updates | 800 | | |
| | policy_gradient_loss | -0.00189 | | |
| | std | 0.873 | | |
| | value_loss | 3.26e+06 | | |
| ----------------------------------------- | |
| ----------------------------------------- | |
| | rollout/ | | | |
| | ep_len_mean | 1e+03 | | |
| | ep_rew_mean | -8.2e+04 | | |
| | time/ | | | |
| | fps | 146 | | |
| | iterations | 82 | | |
| | time_elapsed | 1147 | | |
| | total_timesteps | 167936 | | |
| | train/ | | | |
| | approx_kl | 0.004386483 | | |
| | clip_fraction | 0.0127 | | |
| | clip_range | 0.2 | | |
| | entropy_loss | -5.13 | | |
| | explained_variance | 0 | | |
| | learning_rate | 0.0003 | | |
| | loss | 1.87e+06 | | |
| | n_updates | 810 | | |
| | policy_gradient_loss | -0.00205 | | |
| | std | 0.873 | | |
| | value_loss | 3.56e+06 | | |
| ----------------------------------------- | |
| ------------------------------------------ | |
| | rollout/ | | | |
| | ep_len_mean | 1e+03 | | |
| | ep_rew_mean | -8.37e+04 | | |
| | time/ | | | |
| | fps | 145 | | |
| | iterations | 83 | | |
| | time_elapsed | 1167 | | |
| | total_timesteps | 169984 | | |
| | train/ | | | |
| | approx_kl | 0.0041227336 | | |
| | clip_fraction | 0.0245 | | |
| | clip_range | 0.2 | | |
| | entropy_loss | -5.14 | | |
| | explained_variance | 0 | | |
| | learning_rate | 0.0003 | | |
| | loss | 1.95e+06 | | |
| | n_updates | 820 | | |
| | policy_gradient_loss | -0.00324 | | |
| | std | 0.873 | | |
| | value_loss | 3.58e+06 | | |
| ------------------------------------------ | |
| ---------------------------------------- | |
| | rollout/ | | | |
| | ep_len_mean | 1e+03 | | |
| | ep_rew_mean | -8.62e+04 | | |
| | time/ | | | |
| | fps | 145 | | |
| | iterations | 84 | | |
| | time_elapsed | 1180 | | |
| | total_timesteps | 172032 | | |
| | train/ | | | |
| | approx_kl | 0.00430945 | | |
| | clip_fraction | 0.0171 | | |
| | clip_range | 0.2 | | |
| | entropy_loss | -5.13 | | |
| | explained_variance | 0 | | |
| | learning_rate | 0.0003 | | |
| | loss | 2.18e+06 | | |
| | n_updates | 830 | | |
| | policy_gradient_loss | -0.0021 | | |
| | std | 0.872 | | |
| | value_loss | 3.97e+06 | | |
| ---------------------------------------- | |
| ------------------------------------------ | |
| | rollout/ | | | |
| | ep_len_mean | 1e+03 | | |
| | ep_rew_mean | -8.81e+04 | | |
| | time/ | | | |
| | fps | 145 | | |
| | iterations | 85 | | |
| | time_elapsed | 1198 | | |
| | total_timesteps | 174080 | | |
| | train/ | | | |
| | approx_kl | 0.0027071913 | | |
| | clip_fraction | 0.0043 | | |
| | clip_range | 0.2 | | |
| | entropy_loss | -5.14 | | |
| | explained_variance | 0 | | |
| | learning_rate | 0.0003 | | |
| | loss | 1.6e+06 | | |
| | n_updates | 840 | | |
| | policy_gradient_loss | -0.000301 | | |
| | std | 0.876 | | |
| | value_loss | 3.94e+06 | | |
| ------------------------------------------ | |
| ----------------------------------------- | |
| | rollout/ | | | |
| | ep_len_mean | 1e+03 | | |
| | ep_rew_mean | -8.97e+04 | | |
| | time/ | | | |
| | fps | 144 | | |
| | iterations | 86 | | |
| | time_elapsed | 1218 | | |
| | total_timesteps | 176128 | | |
| | train/ | | | |
| | approx_kl | 0.003243664 | | |
| | clip_fraction | 0.0133 | | |
| | clip_range | 0.2 | | |
| | entropy_loss | -5.15 | | |
| | explained_variance | 0 | | |
| | learning_rate | 0.0003 | | |
| | loss | 2.15e+06 | | |
| | n_updates | 850 | | |
| | policy_gradient_loss | -0.00204 | | |
| | std | 0.878 | | |
| | value_loss | 4.5e+06 | | |
| ----------------------------------------- | |
| ------------------------------------------ | |
| | rollout/ | | | |
| | ep_len_mean | 1e+03 | | |
| | ep_rew_mean | -9.15e+04 | | |
| | time/ | | | |
| | fps | 143 | | |
| | iterations | 87 | | |
| | time_elapsed | 1239 | | |
| | total_timesteps | 178176 | | |
| | train/ | | | |
| | approx_kl | 0.0029459428 | | |
| | clip_fraction | 0.00308 | | |
| | clip_range | 0.2 | | |
| | entropy_loss | -5.16 | | |
| | explained_variance | 0 | | |
| | learning_rate | 0.0003 | | |
| | loss | 2.44e+06 | | |
| | n_updates | 860 | | |
| | policy_gradient_loss | -0.000751 | | |
| | std | 0.88 | | |
| | value_loss | 4.24e+06 | | |
| ------------------------------------------ | |
| ------------------------------------------ | |
| | rollout/ | | | |
| | ep_len_mean | 1e+03 | | |
| | ep_rew_mean | -9.36e+04 | | |
| | time/ | | | |
| | fps | 143 | | |
| | iterations | 88 | | |
| | time_elapsed | 1258 | | |
| | total_timesteps | 180224 | | |
| | train/ | | | |
| | approx_kl | 0.0043680565 | | |
| | clip_fraction | 0.0208 | | |
| | clip_range | 0.2 | | |
| | entropy_loss | -5.17 | | |
| | explained_variance | 0 | | |
| | learning_rate | 0.0003 | | |
| | loss | 2.09e+06 | | |
| | n_updates | 870 | | |
| | policy_gradient_loss | -0.00237 | | |
| | std | 0.881 | | |
| | value_loss | 4.39e+06 | | |
| ------------------------------------------ | |
| ----------------------------------------- | |
| | rollout/ | | | |
| | ep_len_mean | 1e+03 | | |
| | ep_rew_mean | -9.52e+04 | | |
| | time/ | | | |
| | fps | 142 | | |
| | iterations | 89 | | |
| | time_elapsed | 1283 | | |
| | total_timesteps | 182272 | | |
| | train/ | | | |
| | approx_kl | 0.004063189 | | |
| | clip_fraction | 0.012 | | |
| | clip_range | 0.2 | | |
| | entropy_loss | -5.16 | | |
| | explained_variance | 0 | | |
| | learning_rate | 0.0003 | | |
| | loss | 2.77e+06 | | |
| | n_updates | 880 | | |
| | policy_gradient_loss | -0.00207 | | |
| | std | 0.877 | | |
| | value_loss | 4.73e+06 | | |
| ----------------------------------------- | |
| ------------------------------------------ | |
| | rollout/ | | | |
| | ep_len_mean | 1e+03 | | |
| | ep_rew_mean | -9.69e+04 | | |
| | time/ | | | |
| | fps | 141 | | |
| | iterations | 90 | | |
| | time_elapsed | 1306 | | |
| | total_timesteps | 184320 | | |
| | train/ | | | |
| | approx_kl | 0.0049707354 | | |
| | clip_fraction | 0.0279 | | |
| | clip_range | 0.2 | | |
| | entropy_loss | -5.13 | | |
| | explained_variance | 0 | | |
| | learning_rate | 0.0003 | | |
| | loss | 1.65e+06 | | |
| | n_updates | 890 | | |
| | policy_gradient_loss | -0.00372 | | |
| | std | 0.871 | | |
| | value_loss | 3.68e+06 | | |
| ------------------------------------------ | |