neuro-flyt-training / train_log_retry.txt
Antigravity Agent
Deploy Neuro-Flyt 3D Training
ae22fc1
Setting up Training Environment...
Creating Liquid PPO Agent...
Using cpu device
Wrapping the env with a `Monitor` wrapper
Wrapping the env in a DummyVecEnv.
Starting Training (This may take a while)...
----------------------------------
| rollout/ | |
| ep_len_mean | 1e+03 |
| ep_rew_mean | -1.79e+04 |
| time/ | |
| fps | 465 |
| iterations | 1 |
| time_elapsed | 4 |
| total_timesteps | 2048 |
----------------------------------
-----------------------------------------
| rollout/ | |
| ep_len_mean | 1e+03 |
| ep_rew_mean | -1.91e+04 |
| time/ | |
| fps | 24 |
| iterations | 2 |
| time_elapsed | 169 |
| total_timesteps | 4096 |
| train/ | |
| approx_kl | 0.004881427 |
| clip_fraction | 0.0184 |
| clip_range | 0.2 |
| entropy_loss | -5.67 |
| explained_variance | 0.000221 |
| learning_rate | 0.0003 |
| loss | 4.46e+04 |
| n_updates | 10 |
| policy_gradient_loss | -0.00155 |
| std | 0.998 |
| value_loss | 9.86e+04 |
-----------------------------------------
------------------------------------------
| rollout/ | |
| ep_len_mean | 1e+03 |
| ep_rew_mean | -2.01e+04 |
| time/ | |
| fps | 31 |
| iterations | 3 |
| time_elapsed | 196 |
| total_timesteps | 6144 |
| train/ | |
| approx_kl | 0.0020806824 |
| clip_fraction | 0.00215 |
| clip_range | 0.2 |
| entropy_loss | -5.66 |
| explained_variance | -6.6e-05 |
| learning_rate | 0.0003 |
| loss | 6.96e+04 |
| n_updates | 20 |
| policy_gradient_loss | -0.000315 |
| std | 0.996 |
| value_loss | 1.37e+05 |
------------------------------------------
------------------------------------------
| rollout/ | |
| ep_len_mean | 1e+03 |
| ep_rew_mean | -2.08e+04 |
| time/ | |
| fps | 36 |
| iterations | 4 |
| time_elapsed | 226 |
| total_timesteps | 8192 |
| train/ | |
| approx_kl | 0.0041169263 |
| clip_fraction | 0.0206 |
| clip_range | 0.2 |
| entropy_loss | -5.66 |
| explained_variance | -5.96e-06 |
| learning_rate | 0.0003 |
| loss | 7.12e+04 |
| n_updates | 30 |
| policy_gradient_loss | -0.00234 |
| std | 0.994 |
| value_loss | 1.63e+05 |
------------------------------------------
-----------------------------------------
| rollout/ | |
| ep_len_mean | 1e+03 |
| ep_rew_mean | -2.1e+04 |
| time/ | |
| fps | 42 |
| iterations | 5 |
| time_elapsed | 242 |
| total_timesteps | 10240 |
| train/ | |
| approx_kl | 0.003560378 |
| clip_fraction | 0.0138 |
| clip_range | 0.2 |
| entropy_loss | -5.66 |
| explained_variance | 6.62e-06 |
| learning_rate | 0.0003 |
| loss | 8.45e+04 |
| n_updates | 40 |
| policy_gradient_loss | -0.00122 |
| std | 0.998 |
| value_loss | 1.94e+05 |
-----------------------------------------
------------------------------------------
| rollout/ | |
| ep_len_mean | 1e+03 |
| ep_rew_mean | -2.13e+04 |
| time/ | |
| fps | 47 |
| iterations | 6 |
| time_elapsed | 258 |
| total_timesteps | 12288 |
| train/ | |
| approx_kl | 0.0027945049 |
| clip_fraction | 0.0139 |
| clip_range | 0.2 |
| entropy_loss | -5.67 |
| explained_variance | 2.8e-06 |
| learning_rate | 0.0003 |
| loss | 6.45e+04 |
| n_updates | 50 |
| policy_gradient_loss | -0.00151 |
| std | 1 |
| value_loss | 1.47e+05 |
------------------------------------------
-----------------------------------------
| rollout/ | |
| ep_len_mean | 1e+03 |
| ep_rew_mean | -2.19e+04 |
| time/ | |
| fps | 52 |
| iterations | 7 |
| time_elapsed | 274 |
| total_timesteps | 14336 |
| train/ | |
| approx_kl | 0.004093081 |
| clip_fraction | 0.018 |
| clip_range | 0.2 |
| entropy_loss | -5.68 |
| explained_variance | 1.79e-07 |
| learning_rate | 0.0003 |
| loss | 9.83e+04 |
| n_updates | 60 |
| policy_gradient_loss | -0.00117 |
| std | 1 |
| value_loss | 1.69e+05 |
-----------------------------------------
------------------------------------------
| rollout/ | |
| ep_len_mean | 1e+03 |
| ep_rew_mean | -2.21e+04 |
| time/ | |
| fps | 56 |
| iterations | 8 |
| time_elapsed | 290 |
| total_timesteps | 16384 |
| train/ | |
| approx_kl | 0.0041737873 |
| clip_fraction | 0.0396 |
| clip_range | 0.2 |
| entropy_loss | -5.67 |
| explained_variance | -2.38e-07 |
| learning_rate | 0.0003 |
| loss | 9.31e+04 |
| n_updates | 70 |
| policy_gradient_loss | -0.00342 |
| std | 0.996 |
| value_loss | 1.76e+05 |
------------------------------------------
------------------------------------------
| rollout/ | |
| ep_len_mean | 1e+03 |
| ep_rew_mean | -2.21e+04 |
| time/ | |
| fps | 59 |
| iterations | 9 |
| time_elapsed | 309 |
| total_timesteps | 18432 |
| train/ | |
| approx_kl | 0.0060277004 |
| clip_fraction | 0.037 |
| clip_range | 0.2 |
| entropy_loss | -5.65 |
| explained_variance | 2.21e-06 |
| learning_rate | 0.0003 |
| loss | 6.73e+04 |
| n_updates | 80 |
| policy_gradient_loss | -0.00309 |
| std | 0.991 |
| value_loss | 1.55e+05 |
------------------------------------------
------------------------------------------
| rollout/ | |
| ep_len_mean | 1e+03 |
| ep_rew_mean | -2.32e+04 |
| time/ | |
| fps | 62 |
| iterations | 10 |
| time_elapsed | 326 |
| total_timesteps | 20480 |
| train/ | |
| approx_kl | 0.0032014307 |
| clip_fraction | 0.0083 |
| clip_range | 0.2 |
| entropy_loss | -5.63 |
| explained_variance | 2.98e-07 |
| learning_rate | 0.0003 |
| loss | 8.79e+04 |
| n_updates | 90 |
| policy_gradient_loss | -0.000593 |
| std | 0.989 |
| value_loss | 1.53e+05 |
------------------------------------------
------------------------------------------
| rollout/ | |
| ep_len_mean | 1e+03 |
| ep_rew_mean | -2.57e+04 |
| time/ | |
| fps | 64 |
| iterations | 11 |
| time_elapsed | 348 |
| total_timesteps | 22528 |
| train/ | |
| approx_kl | 0.0035356751 |
| clip_fraction | 0.012 |
| clip_range | 0.2 |
| entropy_loss | -5.61 |
| explained_variance | 5.96e-08 |
| learning_rate | 0.0003 |
| loss | 1.91e+05 |
| n_updates | 100 |
| policy_gradient_loss | -0.00137 |
| std | 0.981 |
| value_loss | 3.78e+05 |
------------------------------------------
------------------------------------------
| rollout/ | |
| ep_len_mean | 1e+03 |
| ep_rew_mean | -2.78e+04 |
| time/ | |
| fps | 67 |
| iterations | 12 |
| time_elapsed | 365 |
| total_timesteps | 24576 |
| train/ | |
| approx_kl | 0.0027306664 |
| clip_fraction | 0.00293 |
| clip_range | 0.2 |
| entropy_loss | -5.6 |
| explained_variance | 1.79e-07 |
| learning_rate | 0.0003 |
| loss | 4.31e+05 |
| n_updates | 110 |
| policy_gradient_loss | -0.000544 |
| std | 0.983 |
| value_loss | 9.15e+05 |
------------------------------------------
Traceback (most recent call last):
File "/home/ylop/Documents/drone go brr/Drone-go-brrrrr/Drone-go-brrrrr/train.py", line 35, in <module>
train()
~~~~~^^
File "/home/ylop/Documents/drone go brr/Drone-go-brrrrr/Drone-go-brrrrr/train.py", line 28, in train
model.learn(total_timesteps=total_timesteps, callback=checkpoint_callback)
~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/ylop/.local/lib/python3.14/site-packages/stable_baselines3/ppo/ppo.py", line 311, in learn
return super().learn(
~~~~~~~~~~~~~^
total_timesteps=total_timesteps,
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
...<4 lines>...
progress_bar=progress_bar,
^^^^^^^^^^^^^^^^^^^^^^^^^^
)
^
File "/home/ylop/.local/lib/python3.14/site-packages/stable_baselines3/common/on_policy_algorithm.py", line 324, in learn
continue_training = self.collect_rollouts(self.env, callback, self.rollout_buffer, n_rollout_steps=self.n_steps)
File "/home/ylop/.local/lib/python3.14/site-packages/stable_baselines3/common/on_policy_algorithm.py", line 202, in collect_rollouts
actions, values, log_probs = self.policy(obs_tensor)
~~~~~~~~~~~^^^^^^^^^^^^
File "/home/ylop/.local/lib/python3.14/site-packages/torch/nn/modules/module.py", line 1775, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
~~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^
File "/home/ylop/.local/lib/python3.14/site-packages/torch/nn/modules/module.py", line 1786, in _call_impl
return forward_call(*args, **kwargs)
File "/home/ylop/.local/lib/python3.14/site-packages/stable_baselines3/common/policies.py", line 645, in forward
features = self.extract_features(obs)
File "/home/ylop/.local/lib/python3.14/site-packages/stable_baselines3/common/policies.py", line 672, in extract_features
return super().extract_features(obs, self.features_extractor if features_extractor is None else features_extractor)
~~~~~~~~~~~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/ylop/.local/lib/python3.14/site-packages/stable_baselines3/common/policies.py", line 131, in extract_features
return features_extractor(preprocessed_obs)
File "/home/ylop/.local/lib/python3.14/site-packages/torch/nn/modules/module.py", line 1775, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
~~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^
File "/home/ylop/.local/lib/python3.14/site-packages/torch/nn/modules/module.py", line 1786, in _call_impl
return forward_call(*args, **kwargs)
File "/home/ylop/Documents/drone go brr/Drone-go-brrrrr/Drone-go-brrrrr/models/liquid_ppo.py", line 58, in forward
output, self.hx = self.ltc(observations, self.hx)
~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^
File "/home/ylop/.local/lib/python3.14/site-packages/torch/nn/modules/module.py", line 1775, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
~~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^
File "/home/ylop/.local/lib/python3.14/site-packages/torch/nn/modules/module.py", line 1786, in _call_impl
return forward_call(*args, **kwargs)
File "/home/ylop/.local/lib/python3.14/site-packages/ncps/torch/ltc.py", line 185, in forward
h_out, h_state = self.rnn_cell.forward(inputs, h_state, ts)
~~~~~~~~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^
File "/home/ylop/.local/lib/python3.14/site-packages/ncps/torch/ltc_cell.py", line 282, in forward
next_state = self._ode_solver(inputs, states, elapsed_time)
File "/home/ylop/.local/lib/python3.14/site-packages/ncps/torch/ltc_cell.py", line 247, in _ode_solver
v_pre = numerator / (denominator + self._epsilon)
^^^^^
KeyboardInterrupt