Julian Bilcke
commited on
Commit
·
6f7875d
1
Parent(s):
491fbbe
finetrainers is broken, reverting
Browse files- finetrainers/patches/__init__.py +1 -6
- finetrainers/patches/models/ltx_video/patch.py +2 -2
- finetrainers/patches/models/wan/patch.py +0 -33
- finetrainers/trainer/sft_trainer/trainer.py +2 -3
- requirements.txt +2 -1
- requirements_without_flash_attention.txt +2 -1
- vms/ui/project/tabs/preview_tab.py +19 -18
finetrainers/patches/__init__.py
CHANGED
|
@@ -17,12 +17,7 @@ def perform_patches_for_training(args: "BaseArgs", parallel_backend: "ParallelBa
|
|
| 17 |
if parallel_backend.tensor_parallel_enabled:
|
| 18 |
patch.patch_apply_rotary_emb_for_tp_compatibility()
|
| 19 |
|
| 20 |
-
if args.model_name == ModelType.WAN:
|
| 21 |
-
from .models.wan import patch
|
| 22 |
-
|
| 23 |
-
patch.patch_time_text_image_embedding_forward()
|
| 24 |
-
|
| 25 |
if args.training_type == TrainingType.LORA and len(args.layerwise_upcasting_modules) > 0:
|
| 26 |
-
from
|
| 27 |
|
| 28 |
patch.patch_peft_move_adapter_to_device_of_base_layer()
|
|
|
|
| 17 |
if parallel_backend.tensor_parallel_enabled:
|
| 18 |
patch.patch_apply_rotary_emb_for_tp_compatibility()
|
| 19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
if args.training_type == TrainingType.LORA and len(args.layerwise_upcasting_modules) > 0:
|
| 21 |
+
from dependencies.peft import patch
|
| 22 |
|
| 23 |
patch.patch_peft_move_adapter_to_device_of_base_layer()
|
finetrainers/patches/models/ltx_video/patch.py
CHANGED
|
@@ -16,7 +16,7 @@ def patch_apply_rotary_emb_for_tp_compatibility() -> None:
|
|
| 16 |
|
| 17 |
|
| 18 |
def _perform_ltx_transformer_forward_patch() -> None:
|
| 19 |
-
LTXVideoTransformer3DModel.forward =
|
| 20 |
|
| 21 |
|
| 22 |
def _perform_ltx_apply_rotary_emb_tensor_parallel_compatibility_patch() -> None:
|
|
@@ -35,7 +35,7 @@ def _perform_ltx_apply_rotary_emb_tensor_parallel_compatibility_patch() -> None:
|
|
| 35 |
diffusers.models.transformers.transformer_ltx.apply_rotary_emb = apply_rotary_emb
|
| 36 |
|
| 37 |
|
| 38 |
-
def
|
| 39 |
self,
|
| 40 |
hidden_states: torch.Tensor,
|
| 41 |
encoder_hidden_states: torch.Tensor,
|
|
|
|
| 16 |
|
| 17 |
|
| 18 |
def _perform_ltx_transformer_forward_patch() -> None:
|
| 19 |
+
LTXVideoTransformer3DModel.forward = _patched_LTXVideoTransformer3Dforward
|
| 20 |
|
| 21 |
|
| 22 |
def _perform_ltx_apply_rotary_emb_tensor_parallel_compatibility_patch() -> None:
|
|
|
|
| 35 |
diffusers.models.transformers.transformer_ltx.apply_rotary_emb = apply_rotary_emb
|
| 36 |
|
| 37 |
|
| 38 |
+
def _patched_LTXVideoTransformer3Dforward(
|
| 39 |
self,
|
| 40 |
hidden_states: torch.Tensor,
|
| 41 |
encoder_hidden_states: torch.Tensor,
|
finetrainers/patches/models/wan/patch.py
DELETED
|
@@ -1,33 +0,0 @@
|
|
| 1 |
-
from typing import Optional
|
| 2 |
-
|
| 3 |
-
import diffusers
|
| 4 |
-
import torch
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
def patch_time_text_image_embedding_forward() -> None:
|
| 8 |
-
_patch_time_text_image_embedding_forward()
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
def _patch_time_text_image_embedding_forward() -> None:
|
| 12 |
-
diffusers.models.transformers.transformer_wan.WanTimeTextImageEmbedding.forward = (
|
| 13 |
-
_patched_WanTimeTextImageEmbedding_forward
|
| 14 |
-
)
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
def _patched_WanTimeTextImageEmbedding_forward(
|
| 18 |
-
self,
|
| 19 |
-
timestep: torch.Tensor,
|
| 20 |
-
encoder_hidden_states: torch.Tensor,
|
| 21 |
-
encoder_hidden_states_image: Optional[torch.Tensor] = None,
|
| 22 |
-
):
|
| 23 |
-
# Some code has been removed compared to original implementation in Diffusers
|
| 24 |
-
# Also, timestep is typed as that of encoder_hidden_states
|
| 25 |
-
timestep = self.timesteps_proj(timestep).type_as(encoder_hidden_states)
|
| 26 |
-
temb = self.time_embedder(timestep).type_as(encoder_hidden_states)
|
| 27 |
-
timestep_proj = self.time_proj(self.act_fn(temb))
|
| 28 |
-
|
| 29 |
-
encoder_hidden_states = self.text_embedder(encoder_hidden_states)
|
| 30 |
-
if encoder_hidden_states_image is not None:
|
| 31 |
-
encoder_hidden_states_image = self.image_embedder(encoder_hidden_states_image)
|
| 32 |
-
|
| 33 |
-
return temb, timestep_proj, encoder_hidden_states, encoder_hidden_states_image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
finetrainers/trainer/sft_trainer/trainer.py
CHANGED
|
@@ -334,7 +334,6 @@ class SFTTrainer:
|
|
| 334 |
parallel_backend = self.state.parallel_backend
|
| 335 |
train_state = self.state.train_state
|
| 336 |
device = parallel_backend.device
|
| 337 |
-
dtype = self.args.transformer_dtype
|
| 338 |
|
| 339 |
memory_statistics = utils.get_memory_statistics()
|
| 340 |
logger.info(f"Memory before training start: {json.dumps(memory_statistics, indent=4)}")
|
|
@@ -448,8 +447,8 @@ class SFTTrainer:
|
|
| 448 |
|
| 449 |
logger.debug(f"Starting training step ({train_state.step}/{self.args.train_steps})")
|
| 450 |
|
| 451 |
-
|
| 452 |
-
|
| 453 |
latent_model_conditions = utils.make_contiguous(latent_model_conditions)
|
| 454 |
condition_model_conditions = utils.make_contiguous(condition_model_conditions)
|
| 455 |
|
|
|
|
| 334 |
parallel_backend = self.state.parallel_backend
|
| 335 |
train_state = self.state.train_state
|
| 336 |
device = parallel_backend.device
|
|
|
|
| 337 |
|
| 338 |
memory_statistics = utils.get_memory_statistics()
|
| 339 |
logger.info(f"Memory before training start: {json.dumps(memory_statistics, indent=4)}")
|
|
|
|
| 447 |
|
| 448 |
logger.debug(f"Starting training step ({train_state.step}/{self.args.train_steps})")
|
| 449 |
|
| 450 |
+
utils.align_device_and_dtype(latent_model_conditions, device, self.args.transformer_dtype)
|
| 451 |
+
utils.align_device_and_dtype(condition_model_conditions, device, self.args.transformer_dtype)
|
| 452 |
latent_model_conditions = utils.make_contiguous(latent_model_conditions)
|
| 453 |
condition_model_conditions = utils.make_contiguous(condition_model_conditions)
|
| 454 |
|
requirements.txt
CHANGED
|
@@ -19,7 +19,8 @@ eva-decord==0.6.1
|
|
| 19 |
wandb
|
| 20 |
pandas
|
| 21 |
sentencepiece>=0.2.0
|
| 22 |
-
imageio
|
|
|
|
| 23 |
torchdata==0.11.0
|
| 24 |
|
| 25 |
flash-attn @ https://github.com/Dao-AILab/flash-attention/releases/download/v2.7.4.post1/flash_attn-2.7.4.post1+cu12torch2.4cxx11abiFALSE-cp310-cp310-linux_x86_64.whl
|
|
|
|
| 19 |
wandb
|
| 20 |
pandas
|
| 21 |
sentencepiece>=0.2.0
|
| 22 |
+
imageio
|
| 23 |
+
imageio-ffmpeg
|
| 24 |
torchdata==0.11.0
|
| 25 |
|
| 26 |
flash-attn @ https://github.com/Dao-AILab/flash-attention/releases/download/v2.7.4.post1/flash_attn-2.7.4.post1+cu12torch2.4cxx11abiFALSE-cp310-cp310-linux_x86_64.whl
|
requirements_without_flash_attention.txt
CHANGED
|
@@ -20,7 +20,8 @@ eva-decord==0.6.1
|
|
| 20 |
wandb
|
| 21 |
pandas
|
| 22 |
sentencepiece>=0.2.0
|
| 23 |
-
imageio
|
|
|
|
| 24 |
torchdata==0.11.0
|
| 25 |
|
| 26 |
# for youtube video download
|
|
|
|
| 20 |
wandb
|
| 21 |
pandas
|
| 22 |
sentencepiece>=0.2.0
|
| 23 |
+
imageio
|
| 24 |
+
imageio-ffmpeg
|
| 25 |
torchdata==0.11.0
|
| 26 |
|
| 27 |
# for youtube video download
|
vms/ui/project/tabs/preview_tab.py
CHANGED
|
@@ -33,6 +33,25 @@ class PreviewTab(BaseTab):
|
|
| 33 |
|
| 34 |
with gr.Row():
|
| 35 |
with gr.Column(scale=2):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
self.components["prompt"] = gr.Textbox(
|
| 37 |
label="Prompt",
|
| 38 |
placeholder="Enter your prompt here...",
|
|
@@ -82,25 +101,7 @@ class PreviewTab(BaseTab):
|
|
| 82 |
choices=self.get_model_version_choices(default_model),
|
| 83 |
value=self.get_default_model_version(default_model)
|
| 84 |
)
|
| 85 |
-
|
| 86 |
-
# Add dropdown to choose between LoRA and original model
|
| 87 |
-
has_lora = self.check_lora_model_exists()
|
| 88 |
-
lora_choices = []
|
| 89 |
-
default_lora_choice = ""
|
| 90 |
-
|
| 91 |
-
if has_lora:
|
| 92 |
-
lora_choices = ["Use LoRA model", "Use original model"]
|
| 93 |
-
default_lora_choice = "Use LoRA model"
|
| 94 |
-
else:
|
| 95 |
-
lora_choices = ["Cannot find LoRA model", "Use original model"]
|
| 96 |
-
default_lora_choice = "Use original model"
|
| 97 |
|
| 98 |
-
self.components["use_lora"] = gr.Dropdown(
|
| 99 |
-
choices=lora_choices,
|
| 100 |
-
label="Model Selection",
|
| 101 |
-
value=default_lora_choice
|
| 102 |
-
)
|
| 103 |
-
|
| 104 |
# Add image input for image-to-video models
|
| 105 |
self.components["conditioning_image"] = gr.Image(
|
| 106 |
label="Conditioning Image (for Image-to-Video models)",
|
|
|
|
| 33 |
|
| 34 |
with gr.Row():
|
| 35 |
with gr.Column(scale=2):
|
| 36 |
+
|
| 37 |
+
# Add dropdown to choose between LoRA and original model
|
| 38 |
+
has_lora = self.check_lora_model_exists()
|
| 39 |
+
lora_choices = []
|
| 40 |
+
default_lora_choice = ""
|
| 41 |
+
|
| 42 |
+
if has_lora:
|
| 43 |
+
lora_choices = ["Use LoRA model", "Use original model"]
|
| 44 |
+
default_lora_choice = "Use LoRA model"
|
| 45 |
+
else:
|
| 46 |
+
lora_choices = ["Cannot find LoRA model", "Use original model"]
|
| 47 |
+
default_lora_choice = "Use original model"
|
| 48 |
+
|
| 49 |
+
self.components["use_lora"] = gr.Dropdown(
|
| 50 |
+
choices=lora_choices,
|
| 51 |
+
label="Model Selection",
|
| 52 |
+
value=default_lora_choice
|
| 53 |
+
)
|
| 54 |
+
|
| 55 |
self.components["prompt"] = gr.Textbox(
|
| 56 |
label="Prompt",
|
| 57 |
placeholder="Enter your prompt here...",
|
|
|
|
| 101 |
choices=self.get_model_version_choices(default_model),
|
| 102 |
value=self.get_default_model_version(default_model)
|
| 103 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 105 |
# Add image input for image-to-video models
|
| 106 |
self.components["conditioning_image"] = gr.Image(
|
| 107 |
label="Conditioning Image (for Image-to-Video models)",
|