Julian Bilcke
commited on
Commit
·
d78dede
1
Parent(s):
64a70c0
investigate bugs in Finetrainers
Browse files- finetrainers/dataset.py +165 -66
- finetrainers/trainer.py +28 -0
- training/cogvideox/dataset.py +2 -2
finetrainers/dataset.py
CHANGED
|
@@ -15,6 +15,9 @@ from torchvision import transforms
|
|
| 15 |
from torchvision.transforms import InterpolationMode
|
| 16 |
from torchvision.transforms.functional import resize
|
| 17 |
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
# Must import after torch because this can sometimes lead to a nasty segmentation fault, or stack smashing error
|
| 20 |
# Very few bug reports but it happens. Look in decord Github issues for more relevant information.
|
|
@@ -30,6 +33,22 @@ from .constants import ( # noqa
|
|
| 30 |
)
|
| 31 |
|
| 32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
logger = get_logger(__name__)
|
| 34 |
|
| 35 |
|
|
@@ -229,20 +248,48 @@ class ImageOrVideoDataset(Dataset):
|
|
| 229 |
return image
|
| 230 |
|
| 231 |
def _preprocess_video(self, path: Path) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
|
| 232 |
-
|
| 233 |
Loads a single video, or latent and prompt embedding, based on initialization parameters.
|
| 234 |
-
|
| 235 |
Returns a [F, C, H, W] video tensor.
|
| 236 |
"""
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 246 |
|
| 247 |
|
| 248 |
class ImageOrVideoDatasetWithResizing(ImageOrVideoDataset):
|
|
@@ -264,35 +311,60 @@ class ImageOrVideoDatasetWithResizing(ImageOrVideoDataset):
|
|
| 264 |
return image
|
| 265 |
|
| 266 |
def _preprocess_video(self, path: Path) -> torch.Tensor:
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
#print(f"ImageOrVideoDatasetWithResizing: self.resolution_buckets = ", self.resolution_buckets)
|
| 270 |
-
#print(f"ImageOrVideoDatasetWithResizing: self.max_num_frames = ", self.max_num_frames)
|
| 271 |
-
#print(f"ImageOrVideoDatasetWithResizing: video_num_frames = ", video_num_frames)
|
| 272 |
-
|
| 273 |
-
video_buckets = [bucket for bucket in self.resolution_buckets if bucket[0] <= video_num_frames]
|
| 274 |
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 296 |
|
| 297 |
def _find_nearest_resolution(self, height, width):
|
| 298 |
nearest_res = min(self.resolution_buckets, key=lambda x: abs(x[1] - height) + abs(x[2] - width))
|
|
@@ -338,35 +410,62 @@ class ImageOrVideoDatasetWithResizeAndRectangleCrop(ImageOrVideoDataset):
|
|
| 338 |
return arr
|
| 339 |
|
| 340 |
def _preprocess_video(self, path: Path) -> torch.Tensor:
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
print(f"ImageOrVideoDatasetWithResizeAndRectangleCrop: self.resolution_buckets = ", self.resolution_buckets)
|
| 344 |
-
print(f"ImageOrVideoDatasetWithResizeAndRectangleCrop: self.max_num_frames = ", self.max_num_frames)
|
| 345 |
-
print(f"ImageOrVideoDatasetWithResizeAndRectangleCrop: video_num_frames = ", video_num_frames)
|
| 346 |
|
| 347 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 348 |
|
| 349 |
-
if not video_buckets:
|
| 350 |
-
_, h, w = self.resolution_buckets[0]
|
| 351 |
-
video_buckets = [(1, h, w)]
|
| 352 |
-
|
| 353 |
-
nearest_frame_bucket = min(
|
| 354 |
-
video_buckets,
|
| 355 |
-
key=lambda x: abs(x[0] - min(video_num_frames, self.max_num_frames)),
|
| 356 |
-
default=video_buckets[0],
|
| 357 |
-
)[0]
|
| 358 |
-
|
| 359 |
-
frame_indices = list(range(0, video_num_frames, video_num_frames // nearest_frame_bucket))
|
| 360 |
-
|
| 361 |
-
frames = video_reader.get_batch(frame_indices)
|
| 362 |
-
frames = frames[:nearest_frame_bucket].float()
|
| 363 |
-
frames = frames.permute(0, 3, 1, 2).contiguous()
|
| 364 |
-
|
| 365 |
-
nearest_res = self._find_nearest_resolution(frames.shape[2], frames.shape[3])
|
| 366 |
-
frames_resized = self._resize_for_rectangle_crop(frames, nearest_res)
|
| 367 |
-
frames = torch.stack([self.video_transforms(frame) for frame in frames_resized], dim=0)
|
| 368 |
-
return frames
|
| 369 |
-
|
| 370 |
def _find_nearest_resolution(self, height, width):
|
| 371 |
nearest_res = min(self.resolutions, key=lambda x: abs(x[1] - height) + abs(x[2] - width))
|
| 372 |
return nearest_res[1], nearest_res[2]
|
|
|
|
| 15 |
from torchvision.transforms import InterpolationMode
|
| 16 |
from torchvision.transforms.functional import resize
|
| 17 |
|
| 18 |
+
import gc
|
| 19 |
+
import time
|
| 20 |
+
import resource
|
| 21 |
|
| 22 |
# Must import after torch because this can sometimes lead to a nasty segmentation fault, or stack smashing error
|
| 23 |
# Very few bug reports but it happens. Look in decord Github issues for more relevant information.
|
|
|
|
| 33 |
)
|
| 34 |
|
| 35 |
|
| 36 |
+
# Decord is causing us some issues!
|
| 37 |
+
# Let's try to increase file descriptor limits to avoid this error:
|
| 38 |
+
#
|
| 39 |
+
# decord._ffi.base.DECORDError: Resource temporarily unavailable
|
| 40 |
+
try:
|
| 41 |
+
soft, hard = resource.getrlimit(resource.RLIMIT_NOFILE)
|
| 42 |
+
logger.info(f"Current file descriptor limits: soft={soft}, hard={hard}")
|
| 43 |
+
|
| 44 |
+
# Try to increase to hard limit if possible
|
| 45 |
+
if soft < hard:
|
| 46 |
+
resource.setrlimit(resource.RLIMIT_NOFILE, (hard, hard))
|
| 47 |
+
new_soft, new_hard = resource.getrlimit(resource.RLIMIT_NOFILE)
|
| 48 |
+
logger.info(f"Updated file descriptor limits: soft={new_soft}, hard={new_hard}")
|
| 49 |
+
except Exception as e:
|
| 50 |
+
logger.warning(f"Could not check or update file descriptor limits: {e}")
|
| 51 |
+
|
| 52 |
logger = get_logger(__name__)
|
| 53 |
|
| 54 |
|
|
|
|
| 248 |
return image
|
| 249 |
|
| 250 |
def _preprocess_video(self, path: Path) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
|
| 251 |
+
"""
|
| 252 |
Loads a single video, or latent and prompt embedding, based on initialization parameters.
|
|
|
|
| 253 |
Returns a [F, C, H, W] video tensor.
|
| 254 |
"""
|
| 255 |
+
max_retries = 3
|
| 256 |
+
retry_delay = 1.0 # seconds
|
| 257 |
+
|
| 258 |
+
for attempt in range(max_retries):
|
| 259 |
+
try:
|
| 260 |
+
# Create video reader
|
| 261 |
+
video_reader = decord.VideoReader(uri=path.as_posix())
|
| 262 |
+
video_num_frames = len(video_reader)
|
| 263 |
+
|
| 264 |
+
# Process frames
|
| 265 |
+
indices = list(range(0, video_num_frames, video_num_frames // self.max_num_frames))
|
| 266 |
+
frames = video_reader.get_batch(indices)
|
| 267 |
+
frames = frames[: self.max_num_frames].float()
|
| 268 |
+
frames = frames.permute(0, 3, 1, 2).contiguous()
|
| 269 |
+
frames = torch.stack([self.video_transforms(frame) for frame in frames], dim=0)
|
| 270 |
+
|
| 271 |
+
# Explicitly clean up resources
|
| 272 |
+
del video_reader
|
| 273 |
+
|
| 274 |
+
# Force garbage collection occasionally
|
| 275 |
+
if random.random() < 0.05: # 5% chance
|
| 276 |
+
gc.collect()
|
| 277 |
+
|
| 278 |
+
return frames
|
| 279 |
+
|
| 280 |
+
except decord._ffi.base.DECORDError as e:
|
| 281 |
+
# Log the error
|
| 282 |
+
error_msg = str(e)
|
| 283 |
+
if "Resource temporarily unavailable" in error_msg and attempt < max_retries - 1:
|
| 284 |
+
logger.warning(f"Retry {attempt+1}/{max_retries} loading video {path}: {error_msg}")
|
| 285 |
+
|
| 286 |
+
# Clean up and wait before retrying
|
| 287 |
+
gc.collect()
|
| 288 |
+
time.sleep(retry_delay * (attempt + 1)) # Increasing backoff
|
| 289 |
+
else:
|
| 290 |
+
# Either not a resource error or we've run out of retries
|
| 291 |
+
logger.error(f"Failed to load video {path} after {attempt+1} attempts: {error_msg}")
|
| 292 |
+
raise RuntimeError(f"Failed to load video after {max_retries} attempts: {error_msg}")
|
| 293 |
|
| 294 |
|
| 295 |
class ImageOrVideoDatasetWithResizing(ImageOrVideoDataset):
|
|
|
|
| 311 |
return image
|
| 312 |
|
| 313 |
def _preprocess_video(self, path: Path) -> torch.Tensor:
|
| 314 |
+
max_retries = 3
|
| 315 |
+
retry_delay = 1.0 # seconds
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 316 |
|
| 317 |
+
for attempt in range(max_retries):
|
| 318 |
+
try:
|
| 319 |
+
# Create video reader
|
| 320 |
+
video_reader = decord.VideoReader(uri=path.as_posix())
|
| 321 |
+
video_num_frames = len(video_reader)
|
| 322 |
+
|
| 323 |
+
# Find appropriate bucket for the video
|
| 324 |
+
video_buckets = [bucket for bucket in self.resolution_buckets if bucket[0] <= video_num_frames]
|
| 325 |
+
|
| 326 |
+
if not video_buckets:
|
| 327 |
+
_, h, w = self.resolution_buckets[0]
|
| 328 |
+
video_buckets = [(1, h, w)]
|
| 329 |
+
|
| 330 |
+
nearest_frame_bucket = min(
|
| 331 |
+
video_buckets,
|
| 332 |
+
key=lambda x: abs(x[0] - min(video_num_frames, self.max_num_frames)),
|
| 333 |
+
default=video_buckets[0],
|
| 334 |
+
)[0]
|
| 335 |
+
|
| 336 |
+
# Extract and process frames
|
| 337 |
+
frame_indices = list(range(0, video_num_frames, video_num_frames // nearest_frame_bucket))
|
| 338 |
+
frames = video_reader.get_batch(frame_indices)
|
| 339 |
+
frames = frames[:nearest_frame_bucket].float()
|
| 340 |
+
frames = frames.permute(0, 3, 1, 2).contiguous()
|
| 341 |
+
|
| 342 |
+
nearest_res = self._find_nearest_resolution(frames.shape[2], frames.shape[3])
|
| 343 |
+
frames_resized = torch.stack([resize(frame, nearest_res) for frame in frames], dim=0)
|
| 344 |
+
frames = torch.stack([self.video_transforms(frame) for frame in frames_resized], dim=0)
|
| 345 |
+
|
| 346 |
+
# Explicitly clean up resources
|
| 347 |
+
del video_reader
|
| 348 |
+
|
| 349 |
+
# Force garbage collection occasionally
|
| 350 |
+
if random.random() < 0.05: # 5% chance
|
| 351 |
+
gc.collect()
|
| 352 |
+
|
| 353 |
+
return frames
|
| 354 |
+
|
| 355 |
+
except decord._ffi.base.DECORDError as e:
|
| 356 |
+
# Log the error
|
| 357 |
+
error_msg = str(e)
|
| 358 |
+
if "Resource temporarily unavailable" in error_msg and attempt < max_retries - 1:
|
| 359 |
+
logger.warning(f"Retry {attempt+1}/{max_retries} loading video {path}: {error_msg}")
|
| 360 |
+
|
| 361 |
+
# Clean up and wait before retrying
|
| 362 |
+
gc.collect()
|
| 363 |
+
time.sleep(retry_delay * (attempt + 1)) # Increasing backoff
|
| 364 |
+
else:
|
| 365 |
+
# Either not a resource error or we've run out of retries
|
| 366 |
+
logger.error(f"Failed to load video {path} after {attempt+1} attempts: {error_msg}")
|
| 367 |
+
raise RuntimeError(f"Failed to load video after {max_retries} attempts: {error_msg}")
|
| 368 |
|
| 369 |
def _find_nearest_resolution(self, height, width):
|
| 370 |
nearest_res = min(self.resolution_buckets, key=lambda x: abs(x[1] - height) + abs(x[2] - width))
|
|
|
|
| 410 |
return arr
|
| 411 |
|
| 412 |
def _preprocess_video(self, path: Path) -> torch.Tensor:
|
| 413 |
+
max_retries = 3
|
| 414 |
+
retry_delay = 1.0 # seconds
|
|
|
|
|
|
|
|
|
|
| 415 |
|
| 416 |
+
for attempt in range(max_retries):
|
| 417 |
+
try:
|
| 418 |
+
# Create video reader
|
| 419 |
+
video_reader = decord.VideoReader(uri=path.as_posix())
|
| 420 |
+
video_num_frames = len(video_reader)
|
| 421 |
+
|
| 422 |
+
# Find appropriate bucket for the video
|
| 423 |
+
video_buckets = [bucket for bucket in self.resolution_buckets if bucket[0] <= video_num_frames]
|
| 424 |
+
|
| 425 |
+
if not video_buckets:
|
| 426 |
+
_, h, w = self.resolution_buckets[0]
|
| 427 |
+
video_buckets = [(1, h, w)]
|
| 428 |
+
|
| 429 |
+
nearest_frame_bucket = min(
|
| 430 |
+
video_buckets,
|
| 431 |
+
key=lambda x: abs(x[0] - min(video_num_frames, self.max_num_frames)),
|
| 432 |
+
default=video_buckets[0],
|
| 433 |
+
)[0]
|
| 434 |
+
|
| 435 |
+
# Extract and process frames
|
| 436 |
+
frame_indices = list(range(0, video_num_frames, video_num_frames // nearest_frame_bucket))
|
| 437 |
+
frames = video_reader.get_batch(frame_indices)
|
| 438 |
+
frames = frames[:nearest_frame_bucket].float()
|
| 439 |
+
frames = frames.permute(0, 3, 1, 2).contiguous()
|
| 440 |
+
|
| 441 |
+
# Fix: Change self.resolutions to self.resolution_buckets to match the class attribute
|
| 442 |
+
nearest_res = self._find_nearest_resolution(frames.shape[2], frames.shape[3])
|
| 443 |
+
frames_resized = self._resize_for_rectangle_crop(frames, nearest_res)
|
| 444 |
+
frames = torch.stack([self.video_transforms(frame) for frame in frames_resized], dim=0)
|
| 445 |
+
|
| 446 |
+
# Explicitly clean up resources
|
| 447 |
+
del video_reader
|
| 448 |
+
|
| 449 |
+
# Force garbage collection occasionally
|
| 450 |
+
if random.random() < 0.05: # 5% chance
|
| 451 |
+
gc.collect()
|
| 452 |
+
|
| 453 |
+
return frames
|
| 454 |
+
|
| 455 |
+
except decord._ffi.base.DECORDError as e:
|
| 456 |
+
# Log the error
|
| 457 |
+
error_msg = str(e)
|
| 458 |
+
if "Resource temporarily unavailable" in error_msg and attempt < max_retries - 1:
|
| 459 |
+
logger.warning(f"Retry {attempt+1}/{max_retries} loading video {path}: {error_msg}")
|
| 460 |
+
|
| 461 |
+
# Clean up and wait before retrying
|
| 462 |
+
gc.collect()
|
| 463 |
+
time.sleep(retry_delay * (attempt + 1)) # Increasing backoff
|
| 464 |
+
else:
|
| 465 |
+
# Either not a resource error or we've run out of retries
|
| 466 |
+
logger.error(f"Failed to load video {path} after {attempt+1} attempts: {error_msg}")
|
| 467 |
+
raise RuntimeError(f"Failed to load video after {max_retries} attempts: {error_msg}")
|
| 468 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 469 |
def _find_nearest_resolution(self, height, width):
|
| 470 |
nearest_res = min(self.resolutions, key=lambda x: abs(x[1] - height) + abs(x[2] - width))
|
| 471 |
return nearest_res[1], nearest_res[2]
|
finetrainers/trainer.py
CHANGED
|
@@ -2,6 +2,7 @@ import json
|
|
| 2 |
import logging
|
| 3 |
import math
|
| 4 |
import os
|
|
|
|
| 5 |
import random
|
| 6 |
from datetime import datetime, timedelta
|
| 7 |
from pathlib import Path
|
|
@@ -549,6 +550,20 @@ class Trainer:
|
|
| 549 |
def train(self) -> None:
|
| 550 |
logger.info("Starting training")
|
| 551 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 552 |
memory_statistics = get_memory_statistics()
|
| 553 |
logger.info(f"Memory before training start: {json.dumps(memory_statistics, indent=4)}")
|
| 554 |
|
|
@@ -816,9 +831,15 @@ class Trainer:
|
|
| 816 |
progress_bar.set_postfix(logs)
|
| 817 |
accelerator.log(logs, step=global_step)
|
| 818 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 819 |
if global_step >= self.state.train_steps:
|
| 820 |
break
|
| 821 |
|
|
|
|
|
|
|
| 822 |
if num_loss_updates > 0:
|
| 823 |
epoch_loss /= num_loss_updates
|
| 824 |
accelerator.log({"epoch_loss": epoch_loss}, step=global_step)
|
|
@@ -833,6 +854,13 @@ class Trainer:
|
|
| 833 |
if should_run_validation:
|
| 834 |
self.validate(global_step)
|
| 835 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 836 |
accelerator.wait_for_everyone()
|
| 837 |
if accelerator.is_main_process:
|
| 838 |
transformer = unwrap_model(accelerator, self.transformer)
|
|
|
|
| 2 |
import logging
|
| 3 |
import math
|
| 4 |
import os
|
| 5 |
+
import gc
|
| 6 |
import random
|
| 7 |
from datetime import datetime, timedelta
|
| 8 |
from pathlib import Path
|
|
|
|
| 550 |
def train(self) -> None:
|
| 551 |
logger.info("Starting training")
|
| 552 |
|
| 553 |
+
|
| 554 |
+
# Add these lines at the beginning
|
| 555 |
+
if hasattr(resource, 'RLIMIT_NOFILE'):
|
| 556 |
+
try:
|
| 557 |
+
soft, hard = resource.getrlimit(resource.RLIMIT_NOFILE)
|
| 558 |
+
logger.info(f"Current file descriptor limits in trainer: soft={soft}, hard={hard}")
|
| 559 |
+
# Try to increase to hard limit if possible
|
| 560 |
+
if soft < hard:
|
| 561 |
+
resource.setrlimit(resource.RLIMIT_NOFILE, (hard, hard))
|
| 562 |
+
new_soft, new_hard = resource.getrlimit(resource.RLIMIT_NOFILE)
|
| 563 |
+
logger.info(f"Updated file descriptor limits: soft={new_soft}, hard={new_hard}")
|
| 564 |
+
except Exception as e:
|
| 565 |
+
logger.warning(f"Could not check or update file descriptor limits: {e}")
|
| 566 |
+
|
| 567 |
memory_statistics = get_memory_statistics()
|
| 568 |
logger.info(f"Memory before training start: {json.dumps(memory_statistics, indent=4)}")
|
| 569 |
|
|
|
|
| 831 |
progress_bar.set_postfix(logs)
|
| 832 |
accelerator.log(logs, step=global_step)
|
| 833 |
|
| 834 |
+
if global_step % 100 == 0: # Every 100 steps
|
| 835 |
+
# Force garbage collection to clean up any lingering resources
|
| 836 |
+
gc.collect()
|
| 837 |
+
|
| 838 |
if global_step >= self.state.train_steps:
|
| 839 |
break
|
| 840 |
|
| 841 |
+
|
| 842 |
+
|
| 843 |
if num_loss_updates > 0:
|
| 844 |
epoch_loss /= num_loss_updates
|
| 845 |
accelerator.log({"epoch_loss": epoch_loss}, step=global_step)
|
|
|
|
| 854 |
if should_run_validation:
|
| 855 |
self.validate(global_step)
|
| 856 |
|
| 857 |
+
if epoch % 3 == 0: # Every 3 epochs
|
| 858 |
+
logger.info("Performing periodic resource cleanup")
|
| 859 |
+
free_memory()
|
| 860 |
+
gc.collect()
|
| 861 |
+
torch.cuda.empty_cache()
|
| 862 |
+
torch.cuda.synchronize(accelerator.device)
|
| 863 |
+
|
| 864 |
accelerator.wait_for_everyone()
|
| 865 |
if accelerator.is_main_process:
|
| 866 |
transformer = unwrap_model(accelerator, self.transformer)
|
training/cogvideox/dataset.py
CHANGED
|
@@ -57,7 +57,7 @@ class VideoDataset(Dataset):
|
|
| 57 |
self.random_flip = random_flip
|
| 58 |
self.image_to_video = image_to_video
|
| 59 |
|
| 60 |
-
self.
|
| 61 |
(f, h, w) for h in self.height_buckets for w in self.width_buckets for f in self.frame_buckets
|
| 62 |
]
|
| 63 |
|
|
@@ -295,7 +295,7 @@ class VideoDatasetWithResizing(VideoDataset):
|
|
| 295 |
return image, frames, None
|
| 296 |
|
| 297 |
def _find_nearest_resolution(self, height, width):
|
| 298 |
-
nearest_res = min(self.
|
| 299 |
return nearest_res[1], nearest_res[2]
|
| 300 |
|
| 301 |
|
|
|
|
| 57 |
self.random_flip = random_flip
|
| 58 |
self.image_to_video = image_to_video
|
| 59 |
|
| 60 |
+
self.resolution_buckets = [
|
| 61 |
(f, h, w) for h in self.height_buckets for w in self.width_buckets for f in self.frame_buckets
|
| 62 |
]
|
| 63 |
|
|
|
|
| 295 |
return image, frames, None
|
| 296 |
|
| 297 |
def _find_nearest_resolution(self, height, width):
|
| 298 |
+
nearest_res = min(self.resolution_buckets, key=lambda x: abs(x[1] - height) + abs(x[2] - width))
|
| 299 |
return nearest_res[1], nearest_res[2]
|
| 300 |
|
| 301 |
|