Spaces:
Running
on
Zero
Running
on
Zero
Den Pavloff
commited on
Commit
·
8a1b058
1
Parent(s):
f97fc67
fix token conflict
Browse files
CLAUDE.md
ADDED
|
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# CLAUDE.md
|
| 2 |
+
|
| 3 |
+
This file provides guidance to Claude Code (claude.ai/code) when working with code in this repository.
|
| 4 |
+
|
| 5 |
+
## Project Overview
|
| 6 |
+
|
| 7 |
+
KaniTTS is a Text-to-Speech system that uses causal language models to generate speech via NeMo audio codec tokens. The project is deployed as a HuggingFace Gradio Space.
|
| 8 |
+
|
| 9 |
+
## Running the Application
|
| 10 |
+
|
| 11 |
+
```bash
|
| 12 |
+
# Run the Gradio app (launches on http://0.0.0.0:7860)
|
| 13 |
+
python app.py
|
| 14 |
+
```
|
| 15 |
+
|
| 16 |
+
The app requires a HuggingFace token set as the `HF_TOKEN` environment variable to download models.
|
| 17 |
+
|
| 18 |
+
## Architecture
|
| 19 |
+
|
| 20 |
+
### Token Flow Pipeline
|
| 21 |
+
|
| 22 |
+
The system uses a custom token layout that interleaves text and audio in a single sequence:
|
| 23 |
+
|
| 24 |
+
1. **Input prompt construction** (`KaniModel.get_input_ids`):
|
| 25 |
+
- `START_OF_HUMAN` → text tokens → `END_OF_TEXT` → `END_OF_HUMAN`
|
| 26 |
+
- Optionally prefixed with speaker ID (e.g., "andrew: Hello world")
|
| 27 |
+
|
| 28 |
+
2. **LLM generation** (`KaniModel.model_request`):
|
| 29 |
+
- Model generates sequence containing: text section + `START_OF_SPEECH` + audio codec tokens + `END_OF_SPEECH`
|
| 30 |
+
|
| 31 |
+
3. **Audio decoding** (`NemoAudioPlayer.get_waveform`):
|
| 32 |
+
- Extracts audio tokens between `START_OF_SPEECH` and `END_OF_SPEECH`
|
| 33 |
+
- Audio tokens are arranged in 4 interleaved codebooks (q=4)
|
| 34 |
+
- Tokens are offset by `audio_tokens_start + (codebook_size * codebook_index)`
|
| 35 |
+
- NeMo codec reconstructs waveform from the 4 codebooks
|
| 36 |
+
|
| 37 |
+
### Key Classes
|
| 38 |
+
|
| 39 |
+
**`NemoAudioPlayer`** (util.py:27-170)
|
| 40 |
+
- Loads NeMo AudioCodecModel for waveform reconstruction
|
| 41 |
+
- Manages special token IDs (derived from `tokeniser_length` base)
|
| 42 |
+
- Validates output has required speech markers
|
| 43 |
+
- Extracts and decodes 4-codebook audio tokens from LLM output
|
| 44 |
+
- Returns 22050 Hz audio as NumPy array
|
| 45 |
+
|
| 46 |
+
**`KaniModel`** (util.py:172-303)
|
| 47 |
+
- Wraps HuggingFace causal LM (loaded with bfloat16, auto device mapping)
|
| 48 |
+
- Prepares prompts with conversation/modality control tokens
|
| 49 |
+
- Runs generation with sampling parameters (temp, top_p, repetition_penalty)
|
| 50 |
+
- Delegates audio reconstruction to `NemoAudioPlayer`
|
| 51 |
+
- Returns tuple: (audio_array, text, timing_report)
|
| 52 |
+
|
| 53 |
+
**`InitModels`** (util.py:305-343)
|
| 54 |
+
- Factory that loads all models from `model_config.yaml` at startup
|
| 55 |
+
- Returns dict mapping model names to `KaniModel` instances
|
| 56 |
+
- All models share the same `NemoAudioPlayer` instance
|
| 57 |
+
|
| 58 |
+
**`Examples`** (util.py:345-387)
|
| 59 |
+
- Converts `examples.yaml` structure into Gradio Examples format
|
| 60 |
+
- Output order: `[text, model, speaker_id, temperature, top_p, repetition_penalty, max_len]`
|
| 61 |
+
|
| 62 |
+
### Configuration Files
|
| 63 |
+
|
| 64 |
+
**`model_config.yaml`**
|
| 65 |
+
- `nemo_player`: NeMo codec config (model name, token layout constants)
|
| 66 |
+
- `models`: Dict of available TTS models with device_map and optional speaker_id mappings
|
| 67 |
+
|
| 68 |
+
**`examples.yaml`**
|
| 69 |
+
- List of example prompts with associated parameters for Gradio UI
|
| 70 |
+
|
| 71 |
+
### Dependency Setup
|
| 72 |
+
|
| 73 |
+
`create_env.py` runs before imports in `app.py` to:
|
| 74 |
+
- Install transformers from git main branch (required for compatibility)
|
| 75 |
+
- Set `OMP_NUM_THREADS=4`
|
| 76 |
+
- Uses `/tmp/deps_installed` marker to avoid reinstalling on every run
|
| 77 |
+
|
| 78 |
+
## Important Token Constants
|
| 79 |
+
|
| 80 |
+
All special tokens are defined relative to `tokeniser_length` (64400):
|
| 81 |
+
- `start_of_speech = tokeniser_length + 1`
|
| 82 |
+
- `end_of_speech = tokeniser_length + 2`
|
| 83 |
+
- `start_of_human = tokeniser_length + 3`
|
| 84 |
+
- `end_of_human = tokeniser_length + 4`
|
| 85 |
+
- `start_of_ai = tokeniser_length + 5`
|
| 86 |
+
- `end_of_ai = tokeniser_length + 6`
|
| 87 |
+
- `pad_token = tokeniser_length + 7`
|
| 88 |
+
- `audio_tokens_start = tokeniser_length + 10`
|
| 89 |
+
- `codebook_size = 4032`
|
| 90 |
+
|
| 91 |
+
## Multi-Speaker Support
|
| 92 |
+
|
| 93 |
+
Models with `speaker_id` mappings in `model_config.yaml` support voice selection:
|
| 94 |
+
- Speaker IDs are prefixed to the text prompt (e.g., "andrew: Hello")
|
| 95 |
+
- The Gradio UI shows/hides speaker dropdown based on selected model
|
| 96 |
+
- Base models (v.0.1, v.0.2) generate random voices without speaker control
|
| 97 |
+
|
| 98 |
+
## HuggingFace Spaces Deployment
|
| 99 |
+
|
| 100 |
+
The README.md header contains HF Spaces metadata:
|
| 101 |
+
- `sdk: gradio` with version 5.46.0
|
| 102 |
+
- `app_file: app.py` as entrypoint
|
| 103 |
+
- References 3 model checkpoints and the NeMo codec
|
util.py
CHANGED
|
@@ -215,18 +215,26 @@ class KaniModel:
|
|
| 215 |
print(f"Target device: {self.device}")
|
| 216 |
|
| 217 |
# Load model with proper configuration
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 218 |
self.model = AutoModelForCausalLM.from_pretrained(
|
| 219 |
self.conf.model_name,
|
| 220 |
-
|
| 221 |
-
device_map=self.conf.device_map,
|
| 222 |
-
token=self.hf_token,
|
| 223 |
-
trust_remote_code=True # May be needed for some models
|
| 224 |
)
|
| 225 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 226 |
self.tokenizer = AutoTokenizer.from_pretrained(
|
| 227 |
-
self.conf.model_name,
|
| 228 |
-
|
| 229 |
-
trust_remote_code=True
|
| 230 |
)
|
| 231 |
|
| 232 |
print(f"Model loaded successfully on device: {next(self.model.parameters()).device}")
|
|
|
|
| 215 |
print(f"Target device: {self.device}")
|
| 216 |
|
| 217 |
# Load model with proper configuration
|
| 218 |
+
load_kwargs = {
|
| 219 |
+
"dtype": torch.bfloat16,
|
| 220 |
+
"device_map": self.conf.device_map,
|
| 221 |
+
"trust_remote_code": True
|
| 222 |
+
}
|
| 223 |
+
if self.hf_token:
|
| 224 |
+
load_kwargs["token"] = self.hf_token
|
| 225 |
+
|
| 226 |
self.model = AutoModelForCausalLM.from_pretrained(
|
| 227 |
self.conf.model_name,
|
| 228 |
+
**load_kwargs
|
|
|
|
|
|
|
|
|
|
| 229 |
)
|
| 230 |
|
| 231 |
+
tokenizer_kwargs = {"trust_remote_code": True}
|
| 232 |
+
if self.hf_token:
|
| 233 |
+
tokenizer_kwargs["token"] = self.hf_token
|
| 234 |
+
|
| 235 |
self.tokenizer = AutoTokenizer.from_pretrained(
|
| 236 |
+
self.conf.model_name,
|
| 237 |
+
**tokenizer_kwargs
|
|
|
|
| 238 |
)
|
| 239 |
|
| 240 |
print(f"Model loaded successfully on device: {next(self.model.parameters()).device}")
|