justnath's picture
Update app.py
3ec3e54 verified
import gradio as gr
import numpy as np
import random
import torch
import spaces
from PIL import Image
from diffusers import FlowMatchEulerDiscreteScheduler
from optimization import optimize_pipeline_
from qwenimage.pipeline_qwenimage_edit_plus import QwenImageEditPlusPipeline
from qwenimage.transformer_qwenimage import QwenImageTransformer2DModel
from qwenimage.qwen_fa3_processor import QwenDoubleStreamAttnProcessorFA3
import math
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
from PIL import Image
import os
import gradio as gr
from gradio_client import Client, handle_file
import tempfile
# --- Model Loading ---
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = QwenImageEditPlusPipeline.from_pretrained("Qwen/Qwen-Image-Edit-2509",
transformer= QwenImageTransformer2DModel.from_pretrained("linoyts/Qwen-Image-Edit-Rapid-AIO",
subfolder='transformer',
torch_dtype=dtype,
device_map='cuda'),torch_dtype=dtype).to(device)
pipe.load_lora_weights(
"dx8152/Qwen-Edit-2509-Multiple-angles",
weight_name="ι•œε€΄θ½¬ζ’.safetensors", adapter_name="angles"
)
# pipe.load_lora_weights(
# "lovis93/next-scene-qwen-image-lora-2509",
# weight_name="next-scene_lora-v2-3000.safetensors", adapter_name="next-scene"
# )
pipe.set_adapters(["angles"], adapter_weights=[1.])
pipe.fuse_lora(adapter_names=["angles"], lora_scale=1.25)
# pipe.fuse_lora(adapter_names=["next-scene"], lora_scale=1.)
pipe.unload_lora_weights()
pipe.transformer.__class__ = QwenImageTransformer2DModel
pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3())
optimize_pipeline_(pipe, image=[Image.new("RGB", (1024, 1024)), Image.new("RGB", (1024, 1024))], prompt="prompt")
MAX_SEED = np.iinfo(np.int32).max
def _generate_video_segment(input_image_path: str, output_image_path: str, prompt: str, request: gr.Request) -> str:
"""Generates a single video segment using the external service."""
x_ip_token = request.headers['x-ip-token']
video_client = Client("multimodalart/wan-2-2-first-last-frame", headers={"x-ip-token": x_ip_token})
result = video_client.predict(
start_image_pil=handle_file(input_image_path),
end_image_pil=handle_file(output_image_path),
prompt=prompt, api_name="/generate_video",
)
return result[0]["video"]
def build_camera_prompt(rotate_deg, move_forward, vertical_tilt, wideangle):
prompt_parts = []
# Rotation
if rotate_deg != 0:
direction = "left" if rotate_deg > 0 else "right"
if direction == "left":
prompt_parts.append(f"ε°†ι•œε€΄ε‘ε·¦ζ—‹θ½¬{abs(rotate_deg)}εΊ¦ Rotate the camera {abs(rotate_deg)} degrees to the left.")
else:
prompt_parts.append(f"ε°†ι•œε€΄ε‘ε³ζ—‹θ½¬{abs(rotate_deg)}εΊ¦ Rotate the camera {abs(rotate_deg)} degrees to the right.")
# Move forward / close-up
if move_forward > 5:
prompt_parts.append("ε°†ι•œε€΄θ½¬δΈΊη‰Ήε†™ι•œε€΄ Turn the camera to a close-up.")
elif move_forward >= 1:
prompt_parts.append("ε°†ι•œε€΄ε‘ε‰η§»εŠ¨ Move the camera forward.")
# Vertical tilt
if vertical_tilt <= -1:
prompt_parts.append("ε°†η›ΈζœΊθ½¬ε‘ιΈŸηž°θ§†θ§’ Turn the camera to a bird's-eye view.")
elif vertical_tilt >= 1:
prompt_parts.append("ε°†η›ΈζœΊεˆ‡ζ’εˆ°δ»°θ§†θ§†θ§’ Turn the camera to a worm's-eye view.")
# Lens option
if wideangle:
prompt_parts.append(" ε°†ι•œε€΄θ½¬δΈΊεΉΏθ§’ι•œε€΄ Turn the camera to a wide-angle lens.")
final_prompt = " ".join(prompt_parts).strip()
return final_prompt if final_prompt else "no camera movement"
@spaces.GPU
def infer_camera_edit(
image,
rotate_deg,
move_forward,
vertical_tilt,
wideangle,
seed,
randomize_seed,
true_guidance_scale,
num_inference_steps,
height,
width,
prev_output = None,
custom_prompt = None,
edit_strength = 1.0,
progress=gr.Progress(track_tqdm=True)
):
# Use custom prompt if provided, otherwise build from camera controls
if custom_prompt and custom_prompt.strip():
prompt = custom_prompt.strip()
else:
prompt = build_camera_prompt(rotate_deg, move_forward, vertical_tilt, wideangle)
print(f"Generated Prompt: {prompt}")
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=device).manual_seed(seed)
# Choose input image (prefer uploaded, else last output)
pil_images = []
if image is not None:
if isinstance(image, Image.Image):
pil_images.append(image.convert("RGB"))
elif hasattr(image, "name"):
pil_images.append(Image.open(image.name).convert("RGB"))
elif prev_output:
pil_images.append(prev_output.convert("RGB"))
if len(pil_images) == 0:
raise gr.Error("Please upload an image first.")
if prompt == "no camera movement":
return image, seed, prompt
# Control edit strength by adjusting sigmas
# Lower strength = start from less noisy state (preserves more of original)
# Higher strength = start from more noisy state (allows more change)
if edit_strength < 1.0:
# Scale sigmas: strength=0.0 -> max_sigma=0.2, strength=1.0 -> max_sigma=1.0
max_sigma = 0.2 + (edit_strength * 0.8) # Range: 0.2 to 1.0
min_sigma = max_sigma / num_inference_steps
custom_sigmas = np.linspace(max_sigma, min_sigma, num_inference_steps).tolist()
else:
custom_sigmas = None
result = pipe(
image=pil_images,
prompt=prompt,
height=height if height != 0 else None,
width=width if width != 0 else None,
num_inference_steps=num_inference_steps,
generator=generator,
true_cfg_scale=true_guidance_scale,
num_images_per_prompt=1,
sigmas=custom_sigmas,
).images[0]
return result, seed, prompt
def create_video_between_images(input_image, output_image, prompt: str, request: gr.Request) -> str:
"""Create a video between the input and output images."""
if input_image is None or output_image is None:
raise gr.Error("Both input and output images are required to create a video.")
try:
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as tmp:
input_image.save(tmp.name)
input_image_path = tmp.name
output_pil = Image.fromarray(output_image.astype('uint8'))
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as tmp:
output_pil.save(tmp.name)
output_image_path = tmp.name
video_path = _generate_video_segment(
input_image_path,
output_image_path,
prompt if prompt else "Camera movement transformation",
request
)
return video_path
except Exception as e:
raise gr.Error(f"Video generation failed: {e}")
# --- UI ---
css = '''#col-container { max-width: 800px; margin: 0 auto; }
.dark .progress-text{color: white !important}
#examples{max-width: 800px; margin: 0 auto; }'''
def reset_all():
return [0, 0, 0, 0, False, True]
def end_reset():
return False
def update_dimensions_on_upload(image):
if image is None:
return 1024, 1024
original_width, original_height = image.size
if original_width > original_height:
new_width = 1024
aspect_ratio = original_height / original_width
new_height = int(new_width * aspect_ratio)
else:
new_height = 1024
aspect_ratio = original_width / original_height
new_width = int(new_height * aspect_ratio)
# Ensure dimensions are multiples of 8
new_width = (new_width // 8) * 8
new_height = (new_height // 8) * 8
return new_width, new_height
with gr.Blocks(theme=gr.themes.Citrus(), css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("## 🎬 Qwen Image Edit β€” Camera Angle Control")
gr.Markdown("""
Qwen Image Edit 2509 for Camera Control ✨
Using [dx8152's Qwen-Edit-2509-Multiple-angles LoRA](https://huggingface.co/dx8152/Qwen-Edit-2509-Multiple-angles) and [Phr00t/Qwen-Image-Edit-Rapid-AIO](https://huggingface.co/Phr00t/Qwen-Image-Edit-Rapid-AIO/tree/main) for 4-step inference πŸ’¨
"""
)
with gr.Row():
with gr.Column():
image = gr.Image(label="Input Image", type="pil")
prev_output = gr.Image(value=None, visible=False)
is_reset = gr.Checkbox(value=False, visible=False)
with gr.Tab("Camera Controls"):
rotate_deg = gr.Slider(label="Rotate Right-Left (degrees Β°)", minimum=-90, maximum=90, step=45, value=0)
move_forward = gr.Slider(label="Move Forward β†’ Close-Up", minimum=0, maximum=10, step=5, value=0)
vertical_tilt = gr.Slider(label="Vertical Angle (Bird ↔ Worm)", minimum=-1, maximum=1, step=1, value=0)
wideangle = gr.Checkbox(label="Wide-Angle Lens", value=False)
custom_prompt = gr.Textbox(label="Custom Prompt (overrides camera controls)", placeholder="Enter custom prompt to override camera controls...", value="", lines=2)
with gr.Row():
reset_btn = gr.Button("Reset")
run_btn = gr.Button("Generate", variant="primary")
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
edit_strength = gr.Slider(label="Edit Strength", minimum=0.0, maximum=2.0, step=0.05, value=1.0,
info="Controls how much the image changes. Lower = subtle changes, Higher = more dramatic changes")
true_guidance_scale = gr.Slider(label="True Guidance Scale", minimum=1.0, maximum=10.0, step=0.1, value=1.0)
num_inference_steps = gr.Slider(label="Inference Steps", minimum=1, maximum=40, step=1, value=4)
height = gr.Slider(label="Height", minimum=256, maximum=2048, step=8, value=1024)
width = gr.Slider(label="Width", minimum=256, maximum=2048, step=8, value=1024)
with gr.Column():
result = gr.Image(label="Output Image", interactive=False)
prompt_preview = gr.Textbox(label="Processed Prompt", interactive=False)
create_video_button = gr.Button("πŸŽ₯ Create Video Between Images", variant="secondary", visible=False)
with gr.Group(visible=False) as video_group:
video_output = gr.Video(label="Generated Video", show_download_button=True, autoplay=True)
inputs = [
image,rotate_deg, move_forward,
vertical_tilt, wideangle,
seed, randomize_seed, true_guidance_scale, num_inference_steps, height, width, prev_output, custom_prompt, edit_strength
]
outputs = [result, seed, prompt_preview]
# Reset behavior
reset_btn.click(
fn=reset_all,
inputs=None,
outputs=[rotate_deg, move_forward, vertical_tilt, wideangle, is_reset],
queue=False
).then(fn=end_reset, inputs=None, outputs=[is_reset], queue=False)
# Manual generation with video button visibility control
def infer_and_show_video_button(*args):
result_img, result_seed, result_prompt = infer_camera_edit(*args)
# Show video button if we have both input and output images
show_button = args[0] is not None and result_img is not None
return result_img, result_seed, result_prompt, gr.update(visible=show_button)
run_event = run_btn.click(
fn=infer_and_show_video_button,
inputs=inputs,
outputs=outputs + [create_video_button]
)
# Video creation
create_video_button.click(
fn=lambda: gr.update(visible=True),
outputs=[video_group],
api_name=False
).then(
fn=create_video_between_images,
inputs=[image, result, prompt_preview],
outputs=[video_output],
api_name=False
)
# Examples
gr.Examples(
examples=[
["tool_of_the_sea.png", 90, 0, 0, False, 0, True, 1.0, 4, 568, 1024, None, "", 1.0],
["monkey.jpg", -90, 0, 0, False, 0, True, 1.0, 4, 704, 1024, None, "", 1.0],
["metropolis.jpg", 0, 0, -1, False, 0, True, 1.0, 4, 816, 1024, None, "", 1.0],
["disaster_girl.jpg", -45, 0, 1, False, 0, True, 1.0, 4, 768, 1024, None, "", 1.0],
["grumpy.png", 90, 0, 1, False, 0, True, 1.0, 4, 576, 1024, None, "", 1.0]
],
inputs=[image,rotate_deg, move_forward,
vertical_tilt, wideangle,
seed, randomize_seed, true_guidance_scale, num_inference_steps, height, width, prev_output, custom_prompt, edit_strength],
outputs=outputs,
fn=infer_camera_edit,
cache_examples="lazy",
elem_id="examples"
)
# Image upload triggers dimension update and control reset
image.upload(
fn=update_dimensions_on_upload,
inputs=[image],
outputs=[width, height]
).then(
fn=reset_all,
inputs=None,
outputs=[rotate_deg, move_forward, vertical_tilt, wideangle, is_reset],
queue=False
).then(
fn=end_reset,
inputs=None,
outputs=[is_reset],
queue=False
)
# Live updates
def maybe_infer(is_reset, progress=gr.Progress(track_tqdm=True), *args):
if is_reset:
return gr.update(), gr.update(), gr.update(), gr.update()
else:
result_img, result_seed, result_prompt = infer_camera_edit(*args)
# Show video button if we have both input and output
show_button = args[0] is not None and result_img is not None
return result_img, result_seed, result_prompt, gr.update(visible=show_button)
control_inputs = [
image, rotate_deg, move_forward,
vertical_tilt, wideangle,
seed, randomize_seed, true_guidance_scale, num_inference_steps, height, width, prev_output, custom_prompt, edit_strength
]
control_inputs_with_flag = [is_reset] + control_inputs
for control in [rotate_deg, move_forward, vertical_tilt]:
control.release(fn=maybe_infer, inputs=control_inputs_with_flag, outputs=outputs + [create_video_button])
wideangle.input(fn=maybe_infer, inputs=control_inputs_with_flag, outputs=outputs + [create_video_button])
run_event.then(lambda img, *_: img, inputs=[result], outputs=[prev_output])
demo.queue().launch(server_name="0.0.0.0", share=True)