Spaces:
Running
on
Zero
Running
on
Zero
update
Browse files
app.py
CHANGED
|
@@ -15,106 +15,97 @@ processor = LlavaOnevisionProcessor.from_pretrained(model_id)
|
|
| 15 |
model = LlavaOnevisionForConditionalGeneration.from_pretrained(model_id, torch_dtype=torch.float16)
|
| 16 |
model.to("cuda")
|
| 17 |
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
interval = total_frames // num_frames
|
| 22 |
frames = []
|
| 23 |
-
for
|
| 24 |
-
ret, frame =
|
| 25 |
-
pil_img = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
|
| 26 |
if not ret:
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
return frames
|
| 32 |
|
| 33 |
@spaces.GPU
|
| 34 |
def bot_streaming(message, history):
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
image = [msg.path for msg in message.files]
|
| 45 |
-
else:
|
| 46 |
-
# if there's no image uploaded for this turn, look for images in the past turns
|
| 47 |
-
# kept inside tuples, take the last one
|
| 48 |
-
for hist in history:
|
| 49 |
-
if type(hist[0])==tuple:
|
| 50 |
-
image = hist[0][0]
|
| 51 |
-
|
| 52 |
-
if message.files is None:
|
| 53 |
-
gr.Error("You need to upload an image or video for LLaVA to work.")
|
| 54 |
-
|
| 55 |
-
video_extensions = ("avi", "mp4", "mov", "mkv", "flv", "wmv", "mjpeg")
|
| 56 |
-
image_extensions = Image.registered_extensions()
|
| 57 |
-
image_extensions = tuple([ex for ex, f in image_extensions.items()])
|
| 58 |
-
if len(image) == 1:
|
| 59 |
-
if image[0].endswith(video_extensions):
|
| 60 |
-
|
| 61 |
-
video = sample_frames(image[0], 32)
|
| 62 |
image = None
|
| 63 |
-
prompt = f"<|im_start|>user <video>\n{message.text}<|im_end|><|im_start|>assistant"
|
| 64 |
-
elif image[0].endswith(image_extensions):
|
| 65 |
-
image = Image.open(image[0]).convert("RGB")
|
| 66 |
-
video = None
|
| 67 |
-
prompt = f"<|im_start|>user <image>\n{message.text}<|im_end|><|im_start|>assistant"
|
| 68 |
-
|
| 69 |
-
elif len(image) > 1:
|
| 70 |
-
image_list = []
|
| 71 |
-
user_prompt = message.text
|
| 72 |
-
|
| 73 |
-
for img in image:
|
| 74 |
-
if img.endswith(image_extensions):
|
| 75 |
-
img = Image.open(img).convert("RGB")
|
| 76 |
-
image_list.append(img)
|
| 77 |
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
|
| 98 |
-
|
|
|
|
| 99 |
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
model = LlavaOnevisionForConditionalGeneration.from_pretrained(model_id, torch_dtype=torch.float16)
|
| 16 |
model.to("cuda")
|
| 17 |
|
| 18 |
+
# Function to capture frames from the camera
|
| 19 |
+
def capture_camera_frames(num_frames):
|
| 20 |
+
camera = cv2.VideoCapture(0) # Accessing the camera (0 is the default camera)
|
|
|
|
| 21 |
frames = []
|
| 22 |
+
for _ in range(num_frames):
|
| 23 |
+
ret, frame = camera.read()
|
|
|
|
| 24 |
if not ret:
|
| 25 |
+
break
|
| 26 |
+
pil_img = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
|
| 27 |
+
frames.append(pil_img)
|
| 28 |
+
camera.release()
|
| 29 |
return frames
|
| 30 |
|
| 31 |
@spaces.GPU
|
| 32 |
def bot_streaming(message, history):
|
| 33 |
+
txt = message.text
|
| 34 |
+
ext_buffer = f"user\n{txt} assistant"
|
| 35 |
+
|
| 36 |
+
if message.files:
|
| 37 |
+
if len(message.files) == 1:
|
| 38 |
+
image = [message.files[0].path]
|
| 39 |
+
elif len(message.files) > 1:
|
| 40 |
+
image = [msg.path for msg in message.files]
|
| 41 |
+
else:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
image = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
|
| 44 |
+
# Check if we should use the camera
|
| 45 |
+
if txt.lower().startswith("camera"):
|
| 46 |
+
# Capture frames from the camera
|
| 47 |
+
image = capture_camera_frames(5) # Capture 5 frames
|
| 48 |
+
|
| 49 |
+
if message.files is None and not image:
|
| 50 |
+
gr.Error("You need to upload an image or video, or access the camera for LLaVA to work.")
|
| 51 |
+
return
|
| 52 |
+
|
| 53 |
+
video_extensions = ("avi", "mp4", "mov", "mkv", "flv", "wmv", "mjpeg")
|
| 54 |
+
image_extensions = Image.registered_extensions()
|
| 55 |
+
image_extensions = tuple([ex for ex, f in image_extensions.items()])
|
| 56 |
+
|
| 57 |
+
if len(image) == 1:
|
| 58 |
+
if image[0].endswith(video_extensions):
|
| 59 |
+
video = sample_frames(image[0], 32)
|
| 60 |
+
image = None
|
| 61 |
+
prompt = f"<|im_start|>user <video>\n{message.text}<|im_end|><|im_start|>assistant"
|
| 62 |
+
elif image[0].endswith(image_extensions):
|
| 63 |
+
image = Image.open(image[0]).convert("RGB")
|
| 64 |
+
video = None
|
| 65 |
+
prompt = f"<|im_start|>user <image>\n{message.text}<|im_end|><|im_start|>assistant"
|
| 66 |
+
elif len(image) > 1:
|
| 67 |
+
image_list = []
|
| 68 |
+
user_prompt = message.text
|
| 69 |
+
|
| 70 |
+
for img in image:
|
| 71 |
+
if img.endswith(image_extensions):
|
| 72 |
+
img = Image.open(img).convert("RGB")
|
| 73 |
+
image_list.append(img)
|
| 74 |
+
elif img.endswith(video_extensions):
|
| 75 |
+
frames = sample_frames(img, 6)
|
| 76 |
+
for frame in frames:
|
| 77 |
+
image_list.append(frame)
|
| 78 |
+
|
| 79 |
+
toks = "<image>" * len(image_list)
|
| 80 |
+
prompt = "<|im_start|>user" + toks + f"\n{user_prompt}<|im_end|><|im_start|>assistant"
|
| 81 |
|
| 82 |
+
image = image_list
|
| 83 |
+
video = None
|
| 84 |
|
| 85 |
+
inputs = processor(text=prompt, images=image, videos=video, return_tensors="pt").to("cuda", torch.float16)
|
| 86 |
+
streamer = TextIteratorStreamer(processor, **{"max_new_tokens": 200, "skip_special_tokens": True})
|
| 87 |
+
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=200)
|
| 88 |
+
generated_text = ""
|
| 89 |
+
|
| 90 |
+
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
| 91 |
+
thread.start()
|
| 92 |
+
|
| 93 |
+
buffer = ""
|
| 94 |
+
for new_text in streamer:
|
| 95 |
+
buffer += new_text
|
| 96 |
+
generated_text_without_prompt = buffer[len(ext_buffer):]
|
| 97 |
+
time.sleep(0.01)
|
| 98 |
+
yield generated_text_without_prompt
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
# Integrate camera access into Gradio demo
|
| 102 |
+
demo = gr.ChatInterface(fn=bot_streaming, title="LLaVA Onevision with Camera", examples=[
|
| 103 |
+
{"text": "Take a picture with the camera and describe what is in it.", "files":[]},
|
| 104 |
+
{"text": "Do the cats in these two videos have the same breed? What breed is each cat?", "files":["./cats_1.mp4", "./cats_2.mp4"]},
|
| 105 |
+
{"text": "Here are several images from a cooking book, showing how to prepare a meal step by step. Can you write a recipe for the meal?", "files":["./step0.png", "./step1.png", "./step2.png", "./step3.png"]},
|
| 106 |
+
],
|
| 107 |
+
textbox=gr.MultimodalTextbox(file_count="multiple"),
|
| 108 |
+
description="Upload an image or video, or try capturing frames with the camera and chat about it.",
|
| 109 |
+
stop_btn="Stop Generation", multimodal=True)
|
| 110 |
+
|
| 111 |
+
demo.launch(debug=True)
|